
ELSEVIER Ecological Modelling 80 (1995) 69-85

Using parallel computers in environmental modelling:
a working example

R. P a s t r e s *, D a v i d e F r a n c o , G. P e c e n i k , C. So l ido ro , C. D e j a k

University of Venice, Dept. of Physical Chemistry, Sect. of Environmental Physical Chemistry, Dorsoduro 2137, 30123 Venice, Italy

Received 15 April 1993; accepted 22 February 1994

Abstract

An application of the utilization of parallel supercomputers for a 3D eutrophication-diffusion macromodel of the
Venice lagoon is presented.

Problems encountered in program restructuration, in the choice and in the introduction of parallel algorithms for
solving the diffusion equation are discussed, together with the approach used to exploit multitasking performances.

Results obtained show that, through appropriate coding, execution times for a full year simulation of the model,
involving the diffusion and the trophic interactions of eight state variables, with a time step of one hour, have been
decreased by about an order of magnitude.

Keywords: Diffusion; Eutrophication; Lagoon ecosystems

1. Introduct ion

Ecological models represent a valuable tool for
understanding, within a holistic synthesis, the be-
haviour of the multiplicity of biotic and abiotic,
conservative and reacting components, and the
linear and nonlinear interrelationships among
bio-physico-chemical processes and advective-
diffusive transport phenomena. To tackle such
complexity and to comply with real world phe-
nomena, ecological models must necessarily in-
clude biochemical, population dynamic, hydrody-

* Corresponding author.

namic and meteoclimatic submodels and be capa-
ble of reproducing the behaviour of relevant envi-
ronmental variables at regime state conditions in
a three-dimensional system.

Until recently, a bottleneck in designing mod-
els of such complexity was represented by the
limited computational potentialities and storage
capacity of available machines. The computa-
tional requirements of a model can be roughly
estimated by multiplying the number of data han-
dled at each time step of the main temporal loop
by the number of time steps. For example, for a
finite-difference model, the product can be com-
puted by multiplying the number of grid points by
the number of the state variables to update at
each time step and by the number of time steps

0304-3800/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0304-3800(94)00049-N

70 R. Pastres et al. ~Ecological Modelling 80 (1995) 69-85

that are required for a meaningful simulation.
Accordingly, a model may be defined a mega-
model if this product is of the order of 106 ,
giga-model if it is of the order of 109, and so on.

The computer generation of the seventies could
easily deal with megamodels, but difficulties were
met in coping with gigamodels, or bigger ones.
The current trend in mathematical modelling is
represented by the elaboration of tera-models,
and a new generation of mainframes is on the
way to satisfy the growing computational demand.
In the last decade, computer technology has un-
dergone an overwhelming upgrading, particularly
with the arrival of the first vector and later, of
parallel supercomputers. The possibility of ex-
ploiting these new machines in the field of envi-
ronmental modelling was early recognized by sev-
eral authors (Karplus 1978; Ginsberg, 1983;
Benyon, 1985; Duff, 1985), who also pointed out
the necessity of designing new algorithms for
taking full advantage of their potentialities
(Jordan, 1982).

2. Objectives of the work

To assess the impact of industrial and munici-
pal pollution, as well as of thermal discharges in
the Venice lagoon ecosystem, following a long-
term interdisciplinary research, a combined, fi-
nite-difference, mathematical 3-D eutrophica-
tion-diffusion model was developed, comprising
the area most suffering from pollution effects.
The satisfactory results obtained so far confirmed
the prospects of extending and improving the
model descriptive potentialities by the ir~troduc-
tion of additional state variables, as well as of
more detailed formulations of physico-chemical
and biological processes.

Such an aim may be achieved only by contain-
ing within acceptable limits the growing expenses
deriving from the greater demand of computer
memory and increase of computation time. Thus,
the recoding of the program has been under-
taken, directed at optimizing the performances
on the supercomputers Cray of the series X-
MP/12 and /48 and YMP, which have been
installed at the Interuniversity Computational

Center (CINECA, Casalecchio di Reno, Bologna)
starting from 1986.

3. Main features of the model

The model covers an area of about 180 kin 2,
whose discretization, with a Ax--100 m, Ay =
100 m and a vertical step Az = 1 m, leads to a
computational domain of 140 x 128 × 20 =
358400 grid points, whereas the time step is
At = 1 h. According to the terminology previously
introduced, it can be classified between a gig-
amodel and a teramodel, since the 358 400 X 8 =
2 867 200 data (grid points × number of state vari-
ables) must be followed for at least one year, i.e.
8760 time steps, yielding about 25.1.109 pro-
cessed data.

On account of the fact that the hydrodynamic
regime of the Venice lagoon is predominantly
governed by tidal movement, the transport pro-
cess of soluble and/or suspended material is
described through an eddy-diffusion mechanism.
This includes space- and time-constant eddy dif-
fusivities, which were estimated and calibrated
with the aid of a specifically elaborated 2D ad-
vection diffusion model (Dejak et al., 1987a), in
order to reproduce appropriately tidal agitation.

Boundary conditions were derived through a
second-order finite difference analysis of the log-
arithmic concentrations, i.e., by means of a delo-
calized Gauss function, which is the analytical
solution of the diffusion equation under simple
boundary and initial conditions. Wherever possi-
ble, the extrapolation of boundary values is per-
formed using the values at three internal contigu-
ous water cells adjacent to the boundary, but
alternative formulations are required to deal with
different bathymetric situations (Dejak et al.,
1987b). System three dimensionality, together
with the adopted non-linear open boundaries
conditions enable the achievement of steady
states, in presence of continuous sources of pollu-
tants, making it possible to follow their succession
in time up to attaining a regime state. Model
seasonalization is effected by specifically elabo-
rated submodels which, based on the quantifica-
tion of energy balance at air-water interfaces,

R. Pastres et al. ~Ecological Modelling 80 (1995) 69-85 71

perform the computation of the photoperiod
throughout the seasons, while permitting the as-
signment of water temperature values at all grid

points at each time step and the description of
the evolution of the thermal stratification in the
deepest channels (Dejak et al., 1992). The biolog-

Table 1
a. System of differential equations which describes the evolution of the state variables within each cell of the grid. Fluxes between
cells are accounted for by the diffusion process

State variables:

[F] = phytoplankton density

[Z] = zooplankton density

[NOx] = concentration of nitrogen in oxidized form

[NH~-] = concentration of nitrogen in reduced form

[PO 3 -] = concentration of reactive phosphorus

[BOD] = concentration of organic matter which undergoes biochemical oxidation

[DO] = concentration of dissolved oxygen

Ordinary differential equations:
d[F]

dt = { fl - (KmfO(T) + Ksedf + KrfO(T)) }[F] - Kg~zO(T) f ([F])[Z]

d[Z]
at = { Kg~O(T) f ([F])E f f - K,~O(T) - KesczO(T)} [Z]

dtNO] t O:)
dt ~ [Ntot]]

d[NH~"] d t .[[NH~l[Ntot]) RNc{KrrO(T)[F] +K O(T)[Z]} +Krs . -K . .O(T) [NH2] -RNc l #[F]

d[PO 3 -]
dt Rpc{KrfO(T)[F] +KesczO(T)[Z]} +Kr~p -RPOS[F]

d[BOD]
dt R°c(K'n fO(T) +Ksedf)[F] +R°c(KmzO(T)[Z]) +KdecO(T)[BOD]

d[DO]
dt K Aoo+Roc(A 8 -Kr fO(T)) [F] - K d e c O (r) [a O D] - R o N (K n i t O (T) [N H 2]) --Kosed

Functional relationship:

/3(T,N,P,I) = / z (T) f([Ntot]) f ([P]) f (I)
where:

/z(T) = p,o[(Ta - T) / (T a - To)] b(Ta-r°) exp[b(T - To)] = maximum phytoplankton gross growth rate at temperature T;

f(Ntot) = [Ntot]/(Kn + [Ntot]) = limitation of phytoplankton growth due to nitrogen;
f (P) = [P] / (Kp + [a]) = limitation of phytoplankton growth due to phosphorus;

f (I) = e / a 1{ exp[- a 2exp(- a 1)] - exp(- a 2)} = limitation of phytoplankton growth due to incident light intensity (I)
where:
a 1 = KhZ;
a 2 = I/Io; z = depth;
f(F) = [F]/(KI + [F])
O(T) = 1.07 (T-20)
ADO = [DOsat] - [DO] = Oxigen deficit
where:
[DOsat] = 14.6244 - 0.367134T + 0.0044972T 2 - 0.0966S + 0.00005TS + 0.0002739S 2

[mg C 1- i]

[m g C l - ']
[mg N 1-1]

[m g N 1 - 1]

[mg P 1- 1]

[mgO1-1]

[mg 0 1- 1]

(1)

12)

(3)

(4)

(5)

(6)

(7)

72 R. Pastres et al. / Ecological Modelling 80 (1995) 69-85

Table 1 (continued)
b. Functional relationship between forcing functions (T,I), and kinetic parameters and list of parameter values which appear in
Table la

Parameters:
~o = 0.12 [h-1] maximum specific growth rate of phytoplankton at optimal temperature T O
Kni t = 0.0023 [h - l] nitrification rate
K'de c = 0.0048 [h -1] BOD decay rate
K n = 0.05 [mg N 1-i] nitrogen half-saturation constant
Kp = 0.01 [mg P 1-1] phosphorus half-saturation constant
K,,f = 0.005 [h-1] phytoplankton mortality rate
Krf= 0.004 [h -1] phytoplankton respiration rate
Kmz = 0.005 [h-1] zooplankton mortality rate
Kescz = 0 .002 [h - 1] zooplankton escretion rate
Kgrz = 0.05 [h-i] grazing zooplankton rate
Kfz = 1 [mg C 1-1] grazing half-saturation constant
Ksedf = 0.004 [h -I] phytoplankton sedimentation rate
Krs n = 0.0007 [mg N 1-1 h -1] rate of nitrogen release from the sediment
Krs n = 0.0001 [mg N 1-1 h -1] rate of phosphorus release from the sediment
Korea = 0.001 [mg DO 1-1 h -I] rate of sediment uptaken of oxygen
Krear = 0.045 [h-I] reareation constant
Eff = 0.7 efficiency in biomass conversion from phytoplankton to zooplankton
I o = 50.000 [lux] optimal light intensity for photosynthesis
Kh: = 0.4 [m - I] light shading coefficient
T O = 31 [°C] optimal temperature for phytoplankton growth
T a = 35 [°C] temperature at which phytoplankton growth stops
b = 0.114 [°C-1] empirical coefficient
S = salinity of the lagoon (30%0 average value)

ical c o m p a r t m e n t includes seven chemical and
biological state variables, cons idered as the most
representa t ive of the eu t rophica t ion process. In-
ter re la t ionships among state variables were for-
mu la t ed after extensive in situ research (Ber tonat i
et al., 1987) and are repor ted in Tab le la . The
model involves for each state variable, the solu-
t ion of the following second order par t ia l differ-
ent ia l equat ion:

% 0% 0% 0%
- - + + + A j + ~.,Skj (1)

Ot Ox Oy Oz k

where cy represen ts the concen t ra t ion of the Jth
variable, Cbjx = KFj is the flux vector a long the x
direction, Fj be ing the spatial g rad ien t and K a
diffusivity tensor, Aj a set of different ial equa-
t ions in te rconnec t ing the state variables, and Ski,
the sinks a n d / o r sources e i ther i n s t an t aneous or
cont inuous . If the diffusivities are supposed to be

uncor re l a t ed and cons tant in respect of t ime and
space, the diffusivity tensor becomes diagonal:

• x Kx~ o o i l
% = o K. o) r~ (2)
• z o o Kzz rz

and Eq. 1 takes the more familiar form:

OCj 02Cj 02Cj 02Cj
a t = K ~ x ~ + K ' T + Kzz o~

+ A i + ~,SK~. (3)
k

4. Structure of the program

The program is s t ruc tured according to the
flow-chart of Fig. la , and is described in the
caption. The numer ica l in tegra t ion of the diffu-

R. Pastres et al. ~Ecological Modelling 80 (1995) 69-85 73

sion terms of Eq. 3 is performed by applying the
fractional step method, usually employed to deal
with the diffusion along the three space coordi-
nates separately: instead of solving numerically
the global three-dimensional equation, the three
contributions to the flux are computed subdivid-
ing the time step into three substeps and solving
a one-dimensional diffusion equation at a time.
The contribution to the change of concentration
due to biochemical reactions inside each cell is
then added.

The three one-dimensional diffusion equations
are solved by adopting the implicit Laasonen
(Laasonen, 1949) scheme, which proved to be the

(1 + D)c~ +at - D c ~ +at

- D c { + a t + (1 + 2 D) c ~ +at _ Dct3 + at

- -Dct+At l -1 q- (1 -}- 2D)c[+at

most suitable in dealing with continuous sources
of pollutant, as it leads to the best agreement
between the numerical solution and the convolu-
tion of the analytical one, when the latter can be
found (Dejak et al., 1987a). As the same proce-
dure is repeated for each horizontal or vertical
layer, in the following discussion, attention will
be focused on the integration of a single layer,
which can be represented by a 2D matrix, and we
will generally refer to a line or a column of the
matrix as an integration segment. The discretiza-
tion of the diffusion equation, in the simplest
case of costant diffusivities and of close bound-
aries, leads to the following tridiagonal system

= c ' 1

=c'2

r , t + a t
- - L l C i + 1 : C:

(4)

° . .

t + a t
- - D C n - 1

where D is the dimensionless diffusion number,

D = K x x A t / A x 2 = K y y A t / A y 2.

The system was solved using the recursive Thomas
algorithm, considered as the most suitable for the
scalar computers. Defining ai, fli, Yi, respectively
as the coefficients of the unknowns c i_ 1, ci and
ci+ 1, the method requires the following computa-
tional procedure:

forward elimination:

')/I
f l ~ - - &

3,,.
k

(~ i - - O / i f / - - 1)

1
f .

(&-~. f . -1)

c~f,
g l Y~

(C~ - aigi_1) k
g i

D
f l I + D

D
f / = -

(l + 2 D + D f i 1)

1
f .

(l+ D+ Dfn-1)

c~fi
g l = - - - D

(c[+ Dgi-Ofi
g i D

g . = (c t - ~ . g . _ l) f , g. = (c'. + D g . _ 0 f .

(5a)

(5b)

(5c)

(Sd)

(5e)

(5f)

. . .

+ (1 + D) c t . +at

and back substitution:

t + a t
Cn = gn

r t + A t
C[+At = g i - - f i C i + l

cl +a' =g -f2c +a'

=c"

(6a)

(6b)

(6c)

Since the vector f , with constant diffusion
numbers, depends only on the values of the coef-
ficients of the unknowns, it can be evaluated at
start up time, while only the vector g and the
solution vector c need to be computed at each
time step, respectively requiring 3n and 2n oper-
ations. Along both horizontal directions, each
integration segment is made up of a variable
number of land points m, which interrupt the
transport process. Nevertheless, it is still possible
to utilize the same algorithm, but the choice of
the appropriate 81 and fin for each segment
depends upon the local configuration of the
bathymetry and this leads to the computation of
varying fi s.

In the scalar version of the program a complex
procedure was implemented, effecting the check-
ing of the bathymetry at each time step and at
each grid point within each integration segment.

74 IE Pastres et aL ~Ecological Modelling 80 (1995) 69-85

I I
JREACTOR

IREADDATA I) IGETBAT J ~
I It,-,G I (I TEMP

H'FATFLU X LIGHT ~)
t ZDIF

Fig. 1. Flow-chart of the seasonalized program in its present
configuration. Subroutines GETBAT, GEOMET, INIZV, and
TEMP are called before the main loop in time starts, for
reading the bathymethry and performing the calculation of
auxiliary vectors used during the integration of the diffusion
equation. Subroutines HEATFLUX and LIGHT, called once
a day, bring up to date the water temperature and calculate
energy input for phytoplankton photosynthetic activity. The
main body of the program is constituted by the three subrou-
tines XDIF, YDIF, ZDIF, which perform the numerical inte-
gration of the diffusion equation, and REACTOR, which
changes the concentration of state variables within each cell,
according to the equation of Table 1. Subroutines MAPVE
and DEPTH, give a first idea of the concentration pattern,
printing out data regarding a particular layer or vertical
section.

First, the occurrence of water or land was verified
and then different values for f/ were chosen,
according to the position occupied within a set of
continuous water cells, or to the fact that the ith
grid point was the first or the last water point. If
m interruptions were found, the integration was
performed by solving in succession rn + 1 tridiag-

onal systems. Memory saving was achieved in this
way, since the different values for f elements
were rewritten over the same area, but this
method led to implement highly nested condi-
tional blocks, which made the computation rather
cumbersome.

5. Optimization for Cray X-MP/12

The program, originally conceived to run on
one of the fastest scalar computers available in
the seventies (CDC 7600), was first optimized for
the Cray X-MP/12, mostly to solve problems
deriving from the computational domain, which
was too large compared with the RAM memory
resources. In fact, 2867000 memory locations
were needed if the concentration values of the 8
state variables were associated with all the mesh
points, regardless of their belonging to the water-
body. The lagoon being a shallow water basin,
only about 30 000 cells physically pertain to the
modelled system, and constitute the real compu-
tational domain, giving an effective storage de-
mand of 240 000 locations. The concentration val-
ues were therefore associated with the elements
of a vector, regardless of their physical location,
and a 140 × 128 x 20 matrix was constructed,
which establishes a correspondence between the
elements of the vector and their physical position
inside the grid (see Fig. 2). This procedure, the so
called indirect addressing, though permitting the
maintenance of the memory request below the
availability of RAM memory, affected the perfor-
mance, as the gather-scatter operations, needed
to read the state variable vectors, had to be
carried out by an internal software routine.

Also, attempts were made to optimize the dif-
fusion subroutines XDLAAV and YDLAAV,
which take nearly 78% of the execution time, as
shown in Table 3a, because of the non linearity of
the open boundary conditions and of the abruptly
changing lagoon bathymetry. The computation of
the vertical diffusion is less cumbersome, since a
simple reflective condition enables one to deal
with the close boundaries. Earlier optimization
efforts were mainly dedicated to removing all
unvectorizable conditional blocks inside the main

R. Pastres et aL / Ecological Modelling 80 (1995) 69-85 75

loop by adequately coding the checking of the
bathymetry and confining logical operations to
the initialization phase. This aim was achieved by
replacing each piece of code leading to alterna-
tive paths with a single general algebraic expres-
sion, containing several terms, which embodied
all information associated with each grid point
(i.e. water or land, segment lengths, distance of a
water point from the nearest land point, closed or
open boundaries). Switching o n / o f f each term by
means of multiplicative coefficients assuming the
binary code 1 or 0, the correct values for each
element of the auxiliary vector f were chosen.
Through this substitution with more tractable al-
gebraic operations, all nested conditional blocks
could be eliminated, making it possible to fully
vectorize both horizontal diffusion subroutines.
After choosing the right values for the vectors f
for a whole layer, the integration was carried out
by means of vector operations, as the same step
of the recursive algorithm can be computed si-
multaneously for all the systems belonging to the
same layer. However, in spite of a fully achieved
vectorization of the code, a consistent decrease of
the execution time was yet to be obtained, as the
overall performance was greatly affected by the
continuous transfer of data to and from the main
memory, a t ime-consuming operation on super-
computers (Dejak et al., 1988).

6. Optimization of the program for Cray X - M P /
48

The availability, since 1988, of the more pow-
erful Cray X-MP/48 , 8 Mword shared memory
and 4 CPUs, stimulated a general restructuration,
which, again, started from the subroutines XD-
LAAV and YDLAAV. A different approach was
undertaken, aimed at exploiting both the in-
creased vector and parallel potentialities of the
Cray X-MP 48 and its memory capacity. In fact,
by recomputing values for ai, fli , "~i, it becomes
possible to associate an entire integration seg-
ment with only one system, having the maximum
number n x = 128 or n y - - 1 4 0 unknowns. The
three coefficients uniquely define a value for f i ,
so that, once they are assigned at each grid point
and fi is calculated, the simultaneous elimination
of all logical blocks and of all shifting operations
is achieved, greatly enhancing the program vec-
torizability.

The physical meaning of the procedure ap-
pears more clearly, for the general case of space-
varying Dis (which had been already introduced
along the vertical), by rewriting the ith equation
in the modified form:

-Oic~+-?t + (l + D i + O i + l) C ~ +At - Oct+Ati i+1 : C f

(7a)

1 2 3 4 5 1 2 3 4 5
1 1 1 1 1 i 0 1 2 3 0 !
2 1 1 2 i 0 4 5 0 0
3 01if: ~: :0!i: 1 1 3 0 0 0 6 7
4 ~iiii:~i!! 1 4 0 0 0 0 8
5 : : 0 0 i : O 1 5 0 0 0 0 9

B INDEX l i
c(INDEX(I'2) = 1 "

2 c(INDEX(1,3)=2)__
c(INDEX(1,4) =3
c(INDEX(2,2) =4)
c(INDEX(2,3) =5)
c(INDEX(3,4) =6)--

i c(INDEX(3,5)=7)~ _
c(INDEX(4,5) =8)~
c(INDEX(5,5) =9) _

c

Fig. 2. A simple example of indirect addressing. A matrix B(i,j) is defined, whose elements bij can be either 0 or 1 if a land cell
(shaded) or a water cell is found at the position i,j. A second matrix, 1NDEX(i,j), can be derived, whose elements are 0 if bi, j is 0,
or a progressive number, increasing to unity any time that bi, j equals 1. These numbers will indicate the position of the cell i,j
inside a vector c, so that the matrix INDEX establishes a biunivocal correspondence between the coordinates i,j of any water cell
and the elements of the vec to r : b i j = 1 ,~, c(1NDEXij).

76 R. Pastres et al. ~Ecological Modelling 80 (1995) 69-85

C: +At "l- O i (c f +At - C'+A'~i-1]

+ Oi + I(C~ +At -- _t+At X ci+ 1 J=C~ (7b)

Since the reflective condition is applied at
physically closed boundaries, the two contribu-
tions to the flux along a given direction must
vanish if a land cell is found at the ith position.
Therefore, the diffusion number can be associ-
ated with the wall between two ceils and set to 0
if either of them is a land cell, while it maintains
its preassigned value for contiguous water cells. A
matrix of appropriate diffusion numbers can be
readily computed, checking the bathymetry at
start up time for defining a matrix BUd, k), whose
elements are equal to 1 if the cell belongs to the
waterbody and equal to 0 otherwise. Following
this procedure, the three coefficients for a i,/3i, Yi
required for the ith equation along the x direc-
tion at the j th section of the kth layer, are
calculated using the formulas:

Oli = - - D i - 1(a i - l,j,k ai , j ,k) (8a)

/3i = 1 + Di_l(Bi_ld,kni,j,k) + Di(Bi,j,kBi+ld,k)
(8b)

Ti = -- Di (Bi, j ,k Bi +l,j,k) (8C)

The coefficients so computed enable one to
deal with all possible situations occurring within
an integration segment as a consequence of the
variation of the bathymetry. By assigning to
Bn + 1,~,~ or to B0,y,k the value 0, the case of closed
boundary is included as well, being/31 = 1 + D0(1
• 0) +DI(I" 1)= 1 +D1, and /3n = 1 +Dn_l(1 " 1)
+ Dn(1 • 0) = 1 + D n. Furthermore, the procedure
can easily be applied also to the case of space
varied diffusion numbers, which may be esti-
mated as a function of the different mean squared
tidal velocities inside the water body (Dejak and
Pecenik, 1991). After computing the coefficients
for the whole grid, the vectors f are calculated
for each segment along both directions and stored
in two 3D matrices, which contain all the infor-
mation sufficient to correctly deal with the
bathymetry. In this way, with the exception of the
reading of these matrices, no additional opera-
tions are needed during the main loop in time.

The solution of the set of m constant size

tridiagonal systems, associated with the segments
belonging to the same layer, is carried on by
again applying the same recursive algorithm but
in parallel, that is, computing the same step of
the algorithm for the whole system by means of a
single vector operation. The maintenance of this
procedure is preferred, instead of solving sequen-
tially the rn systems using other proposed vecto-
rial algorithms (Traub, 1973; Kershaw, 1982), be-
cause the ratio m / n is nearly 1 in the horizontal
plane. In such instances, as demonstrated by
Hockney and Jesshope (1988), it is more advanta-
geous to keep adopting a recursive algorithm,
which, besides guaranteeing a complete vector-
ization, presents the minimum number of opera-
tions and a lower memory demand for storing the
auxiliary functions.

The solving of a set of tridiagonal systems with
a constant number of unknowns, even when the
segments comprise land cells, may, at first sight,
appear a superfluous operation, and also, the
new procedure seems to increase considerably
the memory demand. As far as the first objection
is concerned, the adoption of this method is
justified by the fact that the minimization of both
logical and input operations inside the main tem-
poral loop allow one to fully exploit the vector
potentialities of the machine, as will be shown in
the result and discussion section. As regards the
second point, a great saving is achieved by storing
the auxiliary functions in three vectors having the
same size of effective computational domain and
using indirect addressing: in fact the auxiliary
function value fi is constantly 0 for any land cell.
The extensive use of indirect addressing does not
affect the performance on Cray X-MP48, as they
are carried on by specifically designed hardware
processors.

6.1. Vertical structuration o f the horizontal diffu-
sion algorithm

The vertical diffusion subroutine ZDLAAV
was restructured, following a procedure analo-
gous to the one illustrated above. The absence of
open boundaries only greatly facilitates the task:
the tridiagonal systems, each simulating the diffu-

R. Pastres et al. / Ecological Modelling 80 (1995) 69-85 77

sion along a water column, were regrouped in
vertical sections of the computational grid; for
each section, the maximum depth was deter-
mined and only the concentration values of water
columns deeper than 1 m were transferred to a
2D matrix and elaborated as discussed above.

The Venice lagoon is a shallow water basin,
with only major navigation channel deeper than 4
m: below this depth, grid points associated with
land are far more abundant than those associated
with water and it frequently happens that no
contiguous water cells are met within a given
segment. Thus, the number of systems to be
solved decreases with depth, as can be seen in
Fig. 3, and an unnecessary waste of time would
derive from a straightforward application of the
above procedure. To avoid this, at each layer the
integration segments containing at least two con-
secutive water elements are counted and their
position inside the layer is memorized. By repeat-
ing the procedure for all layers and for both
directions of integration, two 128 × 20 and 140 ×
20 2D matrices are defined, respectively associ-
ated with the X and Y axes, containing numerical
flags, 1 or 0, which verify whether integration is
to be executed along a specified segment. These

operations are again performed at start up time,
outside the main time loop: inside it, at each time
step, for each layer, only the concentration values
located in the segments which have to be brought
up to date are read from the main memory,
temporarily stored in an auxiliary 2D matrix and
elaborated. In this way, the integration is carried
out, starting from the surface layer and proceed-
ing to the bottom, by gradually reducing the
dimension of the 2D matrix, as the depth in-
creases.

6.2. Open boundaries

Program restructuration was also undertaken
in respect of the purposely elaborated conditions
on the "open boundaries". By adopting the ter-
minology introduced by Song et al. (1986), the
algorithm here adopted, although " independent" ,
may be classified as "unhomogeneous" according
to whether the integration segments present ei-
ther closed or open ends. Three alternative for-
mulations are adopted for extrapolating the
boundary value Co, based on a second and first
difference analysis of the values ct, c2, c 3 of the
state variable in three cells adjacent the bound-

o
13
14 l - - - - - - - ~ 1;r,,
1 6
17
1 8

0 10 20 30 ,40 50 60 7'0
% of segments to be integrated

40 90 100

North-South (XDIF) ~ East-West (YDIF)

Fig. 3. Percentage of segments to be brought up-to-date, and, therefore, of the tridiagonal system to be solved at each time step
along the two horizontal directions, as a function of depth. A marked decrease occurs, especially for the North-South direction (X
axis), below the tenth layer, which suggested modification of the integration procedure, inserting in a 2-D matrix of variable size
only those segments which are affected by the transport process.

78 R. Pastres et al. / Ecological Modelling 80 (1995) 69-85

ary. A Gaussian behaviour of the solution is
assumed when three points belong to the compu-
tational domain (Eq. 9a), an exponential decrease
if only two points are available (Eq. 9b), and,
finally, a closed boundary (Eq. 9c) is simulated
when any extrapolation is impossible.

= o)

C O = C3(C1//C2) 3

In c 0 - 3 In c I + 3 In c 2 - In c a = 0 (9a)

(A, = O)

C O = CI (CI / /C2)

In c 0 - 2 In c 1 + In c 2 = 0 (gb)

C O = C 1

In c o - In c I = 0 (9c)

The extrapolated value cannot be directly in-
troduced in the implicit integration scheme
adopted, without refining it up to convergence,
within a preassigned error. In fact, extrapolation
is based upon the concentration distribution at
the past time, t, and it becomes a first "guess" for
either the first or the last unknown of the linear
system (Eqs. 5). In order to avoid unrealistic
outward fluxes, the extrapolation is repeated af-
ter solving the system and the new value c o is
compared with the old one: if the difference is
greater than a preassigned error additional refin-
ing iterations are performed up to convergence,
using the new c o and c t again. In the previous
version of the program, the choice of the correct
form of Eqs. 10 was made in the initialization
phase, by storing in four matrices the logical
variables which characterize the physical features
of each boundary. Thus, the following general
formulation has been introduced to replace Eqs.
9a, 9b, 9c:

Co= [[man(C1 c2)] k }
[[k c2 ,~11 c k h. (10)

Because of the symmetry of the expression, it
is sufficient to store the exponent of the ratio
Cl/C 2, since it coincides with the second term of
the product, so that k = 3 and k = 1 correspond
to the presence respectively of three points and
two points. The internal function min[(cl/c2),

(c2/cl)] assures a smooth extrapolation whenever
a random fluctuation, originated by fluxes along
other directions, occurs in the concentration pat-
tern, avoiding the introduction of further logical
conditions. Values for k are computed for both
ends of each segment along each direction and
stored in four 2D matrices. The discrimination of
the type of boundary is instead given by the value
taken by the corresponding element of the matrix
B: h = 0 (land) is a closed boundary; h = 1 (water)
is an open boundary. It must be remarked that
the condition expressed by Eq. 9c is a reflective
one: therefore, instead of introducing a logical
condition, h can be set equal to 0 whenever the
last point is isolated from the water body along
the direction perpendicular to the boundary, in-
cluding in the general formulation all possible
cases, without introducing logical instructions ex-
plicitly.

Non linearity of boundary conditions, on the
contrary, affects the computation time more
heavily, since it demands inner loops at each time
steps, whose number is not a priori predictable,
because the convergence depend upon the time-
varying distribution of concentrations within each
segment. To reduce execution time due to this
procedure, after solving the systems first, only
those segments which require further refinement
are replaced in the auxiliary 2D matrix used for
handling the calculations for each layer. The
number of systems to be solved gradually de-
creases, and the internal loop stops when all the
extrapolated values are coherent with the new
concentration patterns.

7. Parallellism on Cray systems: macro-tasking
and micro-tasking

Besides being particularly suitable to be vec-
torized, the program presents in its main body a
true parallel structure. Within each diffusion sub-
routine, the computation is carried on "inde-
pendently" not only with regard to each integra-
tion segment, but also to each layer. These condi-
tions greatly favour the exploitation of the four
CPUs available on the CRAY X-MP/48. Such a
possibility is referred to as "multitasking" and it

R. Pastres et al. / Ecological Modelling 80 (1995) 69-85 79

Table 2
a. Flowtrace of a test version of the original program (1 state variable, and no trophic interactions) obtained with Cray X-MP12, in
dedicated mode for a 48-h simulation

Routine Running time Percent of Number of
(s) running time calls

MODELC 0.001 (0.00%) 1
GEOMET 1.697 (3.45%) 1
GETBAT 0.142 (0.29%) 1
INIZV n.r. (0.00%) 1
XDLAAV 29.429 (59.87%) 48
YDLAAV 12.294 (25.01%) 48
ZDLAAV 5.218 (10.62%) 48
MAPVE 0.275 (0.56%) 4
DEPTH 0.094 (0.19%) 4

Total 49.151 (100%) 156

b. Flowtrace of a test version of the original program (1 state variable, and no trophic interactions) obtained with Cray X-MP48, in
dedicated mode for a 48-h simulation

Routine Running time Percent of Number of
(s) running time calls

Differences with Table 2a

(s) (%)

MODELC 0.004 (0.00%) 1 + 0.003 + 300.0
GEOMET 1.685 (5.19%) 1 - 0.012 - 0.7
GETBAT 0.135 (0.42%) 1 - 0.007 - 4.9
INIZV n.r. (0.00%) 1 n.r n.r.
XDLAAV 14.866 (45.82%) 48 - 14.563 - 49.5
YDLAAV 10.875 (33.52%) 48 - 1.419 - 11.5
ZDLAAV 4.493 (13.85%) 48 - 0.725 - 13.9
MAPVE 0.293 (0.90%) 4 + 0.018 + 6.1
DEPTH 0.092 (0.28%) 4 - 0.002 - 2.1

Total 32.444 (100%) 156 - 16.707 - 34.0

c. Flowtrace of a test version of the program (1 state variable, and no trophic interactions) after restructuring the subroutine which
account for diffusion on the horizontal plane (XDIF, YDIF), obtained with Cray X-MP48, in dedicated mode for a 48-h simulation

Routine Running time Percent of Number of
(s) running time calls

Differences with Table 2b

(s) (%)

MODELN 0.076 (0.57%) 1 + 0.072
GEOMET 0.104 (0.78%) 1 - 1.581
GETBAT 0.135 (1.01%) 1 0.0
INIZV 0.530 (3.98%) 1 0.0
XDIF 4.887 (36.67%) 48 - 9.979
YDIF 2.794 (20.97%) 48 - 8.081
ZDLAAV 4.404 (33.05%) 48 - 0.089
MAPVE 0.303 (2.27%) 4 + 0.010
DEPTH 0.092 (0.69%) 4 0.0

Total 13.325 (100%) 156 - 19.119

+ 1800
-93 .8

0.0
0.0

-67.1
-74.3

- 2 . 0
- 3 . 4

0.0

-58 .9

80 K Pastres et al. / Ecological Modelling 80 (1995) 69-85

13m-m

4~0 (~0 ~) 100 120 140 160 180

number of open boundaries

~--~ North-South (XDIF) l l East-West (YDIF) I

Fig. 4. Number of open boundaries along the two horizontal directions, as a function of depth. The great difference between the
two directions explains the different results reported in Table 2a and 2b. Cray X-MP48 can perform gather-scatter operations,
necessary to deal with the open boundaries, by means of hardware facilities, when, on Cray X-MP12, the same operations had to be
carried out by internal subroutines. As a consequence of this hardware improvement, the execution time of XDLAAV is reduced
by 50%, while the one of subroutine YDLAAV is reduced by only 12%.

may include macro- and microtasking according
to whether independent tasks are carried out at a
subroutine or at a DO loops level (CRAY, 1986).
An example can be given: when employing

macrotasking, the integration of the transport
equation for different state variables could be
concurrently carried on by the four CPUs, while
the microtasking environment would allow one to

Table 3
a. Flowtrace of the original program, with eight state variables which undergo diffusion and biochemical processes, run on Cray
X-MP48, in dedicated mode. Linear extrapolation from this 48 hours simulation, gives an expected running time of about 16h and
40 min for simulating one year

Routine Running time Percent of Number of
(s) running time calls

EUVELAV 0.058 (0.02%) 1
HEATFLUX 0.001 (0.00) 1
FOURIER 0.029 (0.01) 6
GEOMET 1.680 (0.51%) 1
GETBAT 0.140 (0.04%) 1
INIZV n.r. (0.00%) 1
LIGHT n.r. (0.00%) 2
MAPVE 1.669 (0.50%) 32
REACTOR 28.423 (8.59%) 48
TEMP 0.012 (0.01%) 1
TZDLAAV 0.009 (0.01%) 456
XDLAAV 123.401 (37.31%) 48
YDI.AAV 134.599 (40.69%) 48
ZDLAAV 40.737 (12.32%) 48

Total 330.762 (100%) 695

R. Pastres et al. /Ecological Modelling 80 (1995) 69-85 81

b. Flowtrace of the program, with eight state variables, which undergo diffusion and biochemical processes, after restructurating

the subroutines which account for the diffusion, run, for a 48-h simulation, on Cray X-MP48, in dedicated mode. Linear
extrapolation from this 48-h simulation, yields 5 h and 30 min for simulating 1 year: running time was decreased by roughly two

thirds

Rout ine Running time Percent of Number of
(s) running time calls

Differences with Table 3a

(s) (%)

CRAY8 0.156 (0.14%) 1 0.0 0.0

H E A T F L U X 0.001 (0.00) 1 0.0 0.0

F O U R I E R 0.337 (0.31) 6 + 0.308 + 1062.1
G E O M E T 0.106 (0.10%) 1 - 1.574 - 93.7

GETBAT 0.135 (0.13%) 1 - 0.005 - 3.6
INIZV 0.552 (0.50%) 1 0.0 0.0

LIGHT n.r. (0.00%) 2 0.0 0.0

MAPVE 2.056 (1.88%) 32 + 0.387 + 23.2
R E A C T O R 28.532 (25.99%) 48 + 0.109 + 0.4

TEMP 0.014 (0.01%) 1 + 0.002 + 16.7
T Z D L A A V 0.009 (0.01%) 456 0.0 0.0
XDIF 39.553 (36.03 %) 48 - 83.848 + 67.9

YDIF 28.854 (26.28%) 48 - 105.475 - 78.6

Z D I F 9.510 (8.66%) 48 - 31.227 - 76.7

Total 109,775 (100%) 695 - 220.987 - 66.8

deal at the same time with the solution of the
tridiagonal system pertaining to different layers,
but concerning the same variable.

In our particular case, microtasking clearly ap-
pears to be the preferable choice, because the
program granularity is rather fine and the submit-

ted tasks prove to be well balanced. Besides, the
subroutines XDIF, YDIF and ZDIF were already
organized in DO loops, by which the same calcu-
lations are repeated for each layer or vertical
section, so that no change in the structure is
required. Microtasking also permits a more ira-

Table 4
Flowtrace of the new program, with eight state variables, run on Y-MP432, for a 48-h simulation, using one CPU. Linear

extrapolation from these data, gives an expected CPU time of about 4 h and 2 min for a yearly simulation

Routine Running time Percent of Number of

(s) running time calls

Differences with Table 3b

(s) (%)

C O N T O R N I 0.277 (0.33%)

COST n.r. (0.0%)
H E A T F L U X 5,546 (6.49%)

F O U R I E R 0,069 (0.08%)

G E O M E T 0.085 (0.10%)
GETBAT 0.084 (0.10%)

INIZV 0.313 (0,37%)
LIGHT 0.043 (0.05%)
MAPVE 1.036 (1,21%)

N E W M O D E L 0.034 (0,04%)

R E A C T O R 33.516 (39,20%)

TEMP 0.042 (0,05%)
XDIF 23.486 (27.47%)
YDIF 16.497 (19.29%)

Z D I F 4,459 (5.22%)

Total 85.487 (100%)

48 0.0 0.0

1 0.0 0.0

26328 + 5.545 n.r.
6 - 0.268 - 79.6

1 - 0.021 - 19.8

1 - 0.051 - 37.8
1 - 0.239 - 43.3

1097 0.0 0.0
32 - 1.020 - 44.6

1 0.0 0.0
48 + 4.984 + 17.5

1 + 0.028 + 233.3
48 - 16.067 - 40.6
48 - 12.357 - 4 2 . 8
48 - 5.051 - 53.1

277717 - 24.288 - 22,1

82 R. Pastres et aL ~Ecological Modelling 80 (1995) 69-85

mediate and easier synchronization of the differ-
ent jobs, and, consequently, a faster and less
expensive execution. Also less difficulties are en-
countered by the programmer using this environ-
ment.

In 1990 the more powerful Y-MP/432 became
available at the CINECA, but, because of the
structural similarity with the Cray X-MP/48 , fur-
ther essential modifications were not required for
exploiting the new machine at its best. The main
difference is, in fact, a 20% shorter clock period,
which leads to roughly the same decrease in
terms of execution time.

Table 5
CPU time and elapsed time obtained using all four CPUs of
Cray Y-MP432. Automatic parallelization does yet not pro-
vide a good performance when complex programs have to be
dealt with: elapsed time has been decreased by 9% of that
obtained using 1 CPU (see Table 4a). Instead, an appropriate
use of microtasking facilities makes it possible to achieve a
reduction of about 33%. Reported times refer to a 48-h
simulation: linear extrapolation from these data yields an
expected elapsed time of about 1 h and 45 min for a yearly
simulation

CPU Time Elapsed time Ps Fp
(sec) (see) (%)

Automatic
parallelization 310.363 78.233 1.093 11.3
Microtasking 96.613 28.667 2.982 88.5

8. Optimization results

8.1 Vectorization

Trial runs were performed, using an incom-
plete version of the model, momentarily neglect-
ing subroutines implementing model seasonaliza-
tion (subroutines F O U R I E R , H E A T F L U X ,
LIGHT, TEMP) and all biochemical computation
(subroutine REACTOR) and considering only the
diffusion of one conservative variable. The new
diffusion subroutines were named XDIF, YDIF
and ZDIF. All runs include a 48-h test simula-
tion, to guarantee homogeneity in interpreting
the results. Times are always reported in seconds
and a random fluctuation of 10% around their
values may occur for different runs, depending on
the working condition of the machine.

Comparison of Table 2a and 2b shows the
advantages automatically provided by the more
powerful hardware of the Cray X-MP/48: the
overall reduction in running time is roughly 34%,
due partly to the shorter clock-period and partly
to the fact that ga ther / sca t te r operations are
carried out much more quickly by the specifically
designed hardware. The latter improvement ex-
plains the much greater decrease, nearly 50%, in
running time for the subroutine XDLAAV, com-
pared with an average decrease of about 12% for
the subroutines YDLAAV and ZDLAAV: the
greater number of open boundaries along the
S - N direction, see Fig. 4, demands a greater

amount of inner iterations, which involve
gather /sca t ter operations.

The saving obtained by carefully restructuring
the program clearly appears from the data of
Table 2c: the time spent in the two restructured
subprograms, XDIF and YDIF, drops from about
25.7 s to 7.7 s, which is a reduction of roughly two
thirds.

Trial runs regarding the whole seasonalized
program confirmed the results previously ob-
tained, as the comparison between Table 3a and
3b shows. The restructured program runs about 3
times faster than the program optimized for the
CRAY X-MP/12 , the estimated running time for
a yearly simulation being only about 5 h and 30
min. As has been mentioned, the Cray X -MP /4 8
was substituted with the new model Cray Y-
MP/432. As expected, a reduction of the execu-
tion time of about 20% was achieved, as one can
see comparing the data of Table 4, from which it
appears that a full year simulation takes about 4
h 2 min, and Table 3b.

8.2 Parallelization

The results achieved with the optimization can
be evaluated by computing the parallel speed-up
(Ps), that is, the ratio between the elapsed time
obtained using 1 CPU and the one activating all 4
CPUs, and adopting the empirical Amdhal's law
(Eq. 12), (Hockney and Jesshope, 1988) for esti-

R. Pastres et al. / Ecological Modelling 80 (1995) 69-85 83

mat ing the fract ion of the p rogram actually exe-

cuted in paral le l by the four CPUs:

(e , = F , + y , _FP+ (11)
p = l , N m

with: Ps = Paral lel speed-up; F s = Frac t ion of in-
s t ruct ions executed sequential ly; Fp = Frac t ion of
ins t ruct ions executed concur ren t ly for each task
p; m = n u m b e r of processors (CPUs); N =
n u m b e r of tasks; Op = overhead due to in te rna l
rout ines which control the paral lel execution.

Dis regard ing the overhead, which never theless
leads to an unde re s t ima t ion of the fract ion of the
code actually paral lel ized, and consider ing the
whole p rogram as a un ique task, one gets:

which can be solved explicitly for Fp, since Fp + F s

= 1 .

m (P s - 1)
Fp = (m - 1) P s " (13)

Table 5 summarizes the above calculat ion and
compares the per formances ob ta ined by applying
the paral le l izat ion automatical ly provided by the
compiler and the one acquired by se l f -managing
microtasking routines. The compiler does not
seem to cope with the complexity of the program,
as the paral lel speed up is 1.09, which means that
only 11% of the code is executed s imul taneously
by the four CPUs. O n the contrary, a speed up of
2.98 is ob ta ined using microtasking rout ines,

which indicates that at least 88% of the code has
b e e n efficiently paral lel ized.

Table 6
The table summarizes the effects of both hardware and software improvement on the time request for a yearly simulation of the
macromodel. In the upper part performances reffer to diffusive programs only, in the middle part, performances are reported of
seasonalized eutrophic-diffusive programs and in the lower one the results achieved exploiting parallel facilities are shown.
Following a row, one can see the effect of the hardware improvements, as the data are obtained runnig the same program on
different machines. Benefits achieved through the optimization of the code are instead illustrated by the decrease of running time
along the columns of the table

One state variable CDC 7600 A Cray X-MP/12 ~ Cray X-MP/48
1 CPU

Scalar 60.9 (- 92%) 4.7
(47%)

Vectorized I version 2.5 (6%) 1.6
(-56%)

Vectorized II version 0.7

Eight state variables

Scalar 511.56 - 92% 39.62 (- 40.11%) 23.73
(- 30.7%) (- 29.2%)

Vectorized I version 27.46 (- 38.8%) 16.8
(-67.2%)

Vectorized II version 5.5

Eight state variables Cray X-MP/48 A Cray X-MP/12 A Cray Y-MP/432
Dedicated mode 1 CPU 4 CPU 4 CPU

CPU time 5.5 8.0 4.9
(+ 3%) (- 72.5%) (- 74%)

Elapsed time 5.7 (- 61%) 2.2 a (- 21%) 1.75
CPU time/4 1.375 2.0 1.225

" Time estimated from running a test program, in which the eight state variables were not interconnected by the routine
REACTOR.

84 R. Pastres et al. ~Ecological Modelling 80 (1995) 69-85

9. Conclusion and discussion

The increase in total CPU time observed when
exploiting parallelism (first column in Table 5) in
respect of the CPU time obtained using only one
CPU, should not surprise, since a Ps equal to the
number of CPUs, 4 in our case, is purely theoreti-
cal. In fact, some tasks are intrinsically non-paral-
lelizable, for example output operations, and they
are necessarily carried out by one CPU, while the
remaining three are waiting. Also unavoidable is
the so called overhead, that is, the amount of
time used up by the internal routines which man-
age the parallel facilities. In view of that, a Ps of
at least 88% must be considered as satisfactory.

The effects of both hardware and software
improvement, over a decade, on the running time
of the macromodel are summarized in Table 6,
which reports the estimated time for a yearly
simulation, in hours, on different machines and
for different versions of the program. Data were
obtained from test simulations of usually two days
and then extrapolated for the year, after subtract-
ing the time used up by the inizialization subrou-
tines. In the upper part, performances are re-
ferred to diffusive programs only, which served as
a test program for checking both the correctness
of the output and the effectiveness of the restruc-
turation. Times for the seasonalized eutrophic-
diffusive programs, obtained with different ma-
chines but using always one CPU, are reported in
the middle part, while the lower part compares
the results obtained using parallel facilities. Fol-
lowing a row, one can see the effect of the
hardware improvements, as the data are obtained
running the same program on different machines.
In fact, the introduction of the vector processors
caused a decrease of running time of about an
order of magnitude (92%), making it feasible to
perform a yearly simulation of the complete pro-
gram, as less than two days were required, while
about 21 days were necessary on CDC 7600.

The necessity of careful programming for an
optimal exploitation of vector and parallel ma-
chines, at least for complex programs, clearly
appears if one follows the data along a column,
referring to differently structured programs run
on the same machine. For example, an overall

reduction of 76.8% has been obtained through
the two recodifications, allowing one to run the
program on Cray X-MP/48 in 5.5 h instead of in
approximately a day, with obvious benefits for the
cost of simulations. Furthermore, as one can see
from the lower part of the table, an optimization
aimed at exploiting vector processors is usually
helpful in locating the different tasks which can
be carried out concurrently if a parallel machine
is available. In fact, the final version of the pro-
gram proved to be particularly suitable to be
parallelized, leading to an estimated execution
time of only 1.75 h for a yearly simulation. These
drastic reductions not only present economic ben-
efits, but, more important, they offer concrete
possibilities of introducing additional state vari-
ables and a more detailed formulation of their
interactions, so enhancing the descriptive capabil-
ities of the model.

Acknowledgments

The authors wish to thank Mr. Sergio Manzi
for the technical support given during the earliest
elaborations, the CINECA (Casalecchio di Reno,
Bologna) for the favourable conditions offered
for the trial runs of the programs and Dr. G.
Erbacci, for his helpful suggestions. They would
also like to thank Mrs. H.M. Maguire, for care-
fully editing the manuscript. The work has been
funded by the Progetto Finalizzato Laguna di
Venezia of the National Research Council (CNR).

References

CRAY Research Inc., 1986. Multitasking User Guide. CRAY
Computer Systems Technical Note. Pub. No. SN-0222,
Mendota Heights, MN.

Benyon, P.R., 1985. Exploiting vector computer for simula-
tion. Math. Comput. Simul., 27: 121-127.

Bertonati, M., Dejak, C., Mazzei, I. and Pecenik, G., 1987.
Eutrophication model of the Venice lagoon: statistical
treatment of "in situ" measurements of phytoplankton
growth parameters. Ecol. Model., 37: 103-130.

Dejak, C. and Pecenik, G., 1991. A physico-chemical ap-
proach to modelling transport process: an application to
perturbed waterbodies. In: C. Rossi and E. Tiezzi (Edi-
tors), Ecological Physical Chemistry, Proc. of International

R. Pastres et al. ~Ecological Modelling 80 (1995) 69-85 85

Workshop 8-12 Nov. 1990, Siena, Italy. Elsevier, Amster-
dam, pp. 410-418.

Dejak, C., Mazzei Lalatta, I., Molin, M. and Pecenik, G.,
1987a. Tidal three-dimensional diffusion model of the
lagoon of Venice and reliability conditions for its numeri-
cal integration. Ecol. Model., 37: 81-101.

Dejak, C., Mazzei Lalatta, I., Messina, E. and Pecenik, G.,
1987b. A two-dimensional diffusion model of the Venice
Lagoon and relative open boundaries conditions. Ecol.
Modelling, 37: 21-45.

Dejak, C., Pecenik, G., Pastres, R. and Zane, E., 1988. Opti-
mizing an eutrophication-diffusion 3-D macromodel for
the CRAY X-MP/12. Environ. Software, 3(4): 56-64.

Dejak, C., Franco, D., Pastres, R. and Pecenik, G., 1992.
Thermal exchanges at air-water interfacies and reproduc-
tion oftemperature vertical profiles in water columns. J.
Mar. Syst., 3: 465-476.

Duff, I.S., 1985. The use of supercomputer in Europe. Corn-
put. Phys. Commun., 37: 15-25.

Ginsberg, M., 1983. Some observations on supercomputer
computational environments. In: M. Ruschitzka et al.
(Editors), Parallel and Large-scale Computers: Perfor-
mance, Architecture, Application. North Holland Publish-
ing, Amsterdam, pp. 173-184.

Hockney, R.W. and Jesshope, C.R., 1988. Parallel Computers
2nd edition. Adam Hilger, Bristol, UK.

Jordan, T.L., 1982. A guide to parallel computation and some
CRAY-1 experiences. In: G. Rodrigue (Editor), Parallel
Computations. Academic Press, New York, pp. 1-50.

Karplus, W.J., 1978. The impact of new computer architec-
tures on the simulation of environmental system. In:
Vansteenkiste (Editor), Modelling Identification and Con-
trol in Environmental Systems. North-Holland Publishing,
Amsterdam, pp. 1002-1009.

Kershaw, D., 1982. Solution of single tridiagonal systems and
vectorization of the ICCG algorithm on the CRAY-1. In:
G. Rodrigue (Editor), Parallel Computations. Academic
Press, New York, pp. 85-99.

Laasonen, P., 1949. Uber eine Methode zur L6sung der
Warmeleitungsgleichung. Acta Math., 81: 309-314.

Song, J.L., Pielke, R.A. and Segai, M., 1986. Vectorizing a
mesoscale meteorological model on the Cyber 205. Envi-
ron. Software, 1: 10-16.

Traub, J.F., 1973. Iterative solution of tridiagonal systems on
parallel or vector computer. In: J.F. Traub (Editor), Com-
plexity of Sequential and Parallel Algorithms. Academic
Press, London, pp. 49-82.

