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Abstract 

An application of the utilization of parallel supercomputers for a 3D eutrophication-diffusion macromodel of the 
Venice lagoon is presented. 

Problems encountered in program restructuration, in the choice and in the introduction of parallel algorithms for 
solving the diffusion equation are discussed, together with the approach used to exploit multitasking performances. 

Results obtained show that, through appropriate coding, execution times for a full year simulation of the model, 
involving the diffusion and the trophic interactions of eight state variables, with a time step of one hour, have been 
decreased by about an order of magnitude. 
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1. Introduct ion 

Ecological models represent a valuable tool for 
understanding, within a holistic synthesis, the be- 
haviour of the multiplicity of biotic and abiotic, 
conservative and reacting components, and the 
linear and nonlinear interrelationships among 
bio-physico-chemical processes and advective- 
diffusive transport phenomena. To tackle such 
complexity and to comply with real world phe- 
nomena, ecological models must necessarily in- 
clude biochemical, population dynamic, hydrody- 
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namic and meteoclimatic submodels and be capa- 
ble of reproducing the behaviour of relevant envi- 
ronmental variables at regime state conditions in 
a three-dimensional system. 

Until recently, a bottleneck in designing mod- 
els of such complexity was represented by the 
limited computational potentialities and storage 
capacity of available machines. The computa- 
tional requirements of a model can be roughly 
estimated by multiplying the number of data han- 
dled at each time step of the main temporal loop 
by the number of time steps. For example, for a 
finite-difference model, the product can be com- 
puted by multiplying the number of grid points by 
the number of the state variables to update at 
each time step and by the number of time steps 
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that are required for a meaningful simulation. 
Accordingly, a model may be defined a mega- 
model if this product is of the order of 106 , 
giga-model if it is of the order of 109, and so on. 

The computer generation of the seventies could 
easily deal with megamodels, but difficulties were 
met in coping with gigamodels, or bigger ones. 
The current trend in mathematical modelling is 
represented by the elaboration of tera-models, 
and a new generation of mainframes is on the 
way to satisfy the growing computational demand. 
In the last decade, computer technology has un- 
dergone an overwhelming upgrading, particularly 
with the arrival of the first vector and later, of 
parallel supercomputers. The possibility of ex- 
ploiting these new machines in the field of envi- 
ronmental modelling was early recognized by sev- 
eral authors (Karplus 1978; Ginsberg, 1983; 
Benyon, 1985; Duff, 1985), who also pointed out 
the necessity of designing new algorithms for 
taking full advantage of their potentialities 
(Jordan, 1982). 

2. Objectives of the work 

To assess the impact of industrial and munici- 
pal pollution, as well as of thermal discharges in 
the Venice lagoon ecosystem, following a long- 
term interdisciplinary research, a combined, fi- 
nite-difference, mathematical 3-D eutrophica- 
tion-diffusion model was developed, comprising 
the area most suffering from pollution effects. 
The satisfactory results obtained so far confirmed 
the prospects of extending and improving the 
model descriptive potentialities by the ir~troduc- 
tion of additional state variables, as well as of 
more detailed formulations of physico-chemical 
and biological processes. 

Such an aim may be achieved only by contain- 
ing within acceptable limits the growing expenses 
deriving from the greater demand of computer 
memory and increase of computation time. Thus, 
the recoding of the program has been under- 
taken, directed at optimizing the performances 
on the supercomputers Cray of the series X- 
MP/12 and /48 and YMP, which have been 
installed at the Interuniversity Computational 

Center (CINECA, Casalecchio di Reno, Bologna) 
starting from 1986. 

3. Main features of the model 

The model covers an area of about 180 kin 2, 
whose discretization, with a Ax--100 m, Ay = 
100 m and a vertical step Az = 1 m, leads to a 
computational domain of 140 x 128 × 20 = 
358400 grid points, whereas the time step is 
At = 1 h. According to the terminology previously 
introduced, it can be classified between a gig- 
amodel and a teramodel, since the 358 400 X 8 = 
2 867 200 data (grid points × number of state vari- 
ables) must be followed for at least one year, i.e. 
8760 time steps, yielding about 25.1.109 pro- 
cessed data. 

On account of the fact that the hydrodynamic 
regime of the Venice lagoon is predominantly 
governed by tidal movement, the transport pro- 
cess of soluble and/or  suspended material is 
described through an eddy-diffusion mechanism. 
This includes space- and time-constant eddy dif- 
fusivities, which were estimated and calibrated 
with the aid of a specifically elaborated 2D ad- 
vection diffusion model (Dejak et al., 1987a), in 
order to reproduce appropriately tidal agitation. 

Boundary conditions were derived through a 
second-order finite difference analysis of the log- 
arithmic concentrations, i.e., by means of a delo- 
calized Gauss function, which is the analytical 
solution of the diffusion equation under simple 
boundary and initial conditions. Wherever possi- 
ble, the extrapolation of boundary values is per- 
formed using the values at three internal contigu- 
ous water cells adjacent to the boundary, but 
alternative formulations are required to deal with 
different bathymetric situations (Dejak et al., 
1987b). System three dimensionality, together 
with the adopted non-linear open boundaries 
conditions enable the achievement of steady 
states, in presence of continuous sources of pollu- 
tants, making it possible to follow their succession 
in time up to attaining a regime state. Model 
seasonalization is effected by specifically elabo- 
rated submodels which, based on the quantifica- 
tion of energy balance at air-water interfaces, 
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perform the computation of the photoperiod 
throughout the seasons, while permitting the as- 
signment of water temperature values at all grid 

points at each time step and the description of 
the evolution of the thermal stratification in the 
deepest channels (Dejak et al., 1992). The biolog- 

Table 1 
a. System of differential equations which describes the evolution of the state variables within each cell of the grid. Fluxes between 
cells are accounted for by the diffusion process 

State variables: 

[ F ] = phytoplankton density 

[ Z ] = zooplankton density 

[NOx ] = concentration of nitrogen in oxidized form 

[NH~-] = concentration of nitrogen in reduced form 

[PO 3 -  ] = concentration of reactive phosphorus 

[BOD] = concentration of organic matter which undergoes biochemical oxidation 

[DO] = concentration of dissolved oxygen 

Ordinary differential equations: 
d[F]  

dt = { fl - ( KmfO( T) + Ksedf + KrfO( T ) ) }[F]  - Kg~zO( T) f ([  F ])[ Z ] 

d[Z]  
at = { Kg~O(T) f ( [F] )E f f -  K,~O(T) - KesczO(T)} [Z]  

dtNO ] t O:) 
dt ~ [Ntot] ] 

d[NH~" ] d t  .[ [NH~l[Ntot ] ) RNc{KrrO(T)[F] +K .... O(T)[Z]} +Krs . -K . .O(T) [NH2] -RNc l  #[F] 

d[PO 3 -  ] 
dt Rpc{KrfO(T)[F] +KesczO(T)[Z]} +Kr~p -RPOS[F] 

d[BOD] 
dt R°c(K'n fO(T)  +Ksedf)[F] +R°c(KmzO(T)[Z])  +KdecO(T)[BOD] 

d[DO] 
dt K . . . .  Aoo+Roc(A 8 -Kr fO(T) ) [F]  - K d e c O ( r ) [ a O D ]  - R o N ( K n i t O ( T ) [ N H 2 ] )  --Kosed 

Functional relationship: 

/3(T,N,P,I)  = / z ( T )  f([Ntot] ) f ( [ P ] )  f ( I )  
where: 

/z(T) = p,o[(Ta - T ) / ( T  a - To)] b(Ta-r°) exp[b(T - To) ] = maximum phytoplankton gross growth rate at temperature T; 

f(Ntot) = [Ntot]/(Kn + [Ntot] ) = limitation of phytoplankton growth due to nitrogen; 
f ( P )  = [ P ] / (  Kp + [a] )  = limitation of phytoplankton growth due to phosphorus; 

f (  I ) = e / a 1{ exp[ - a 2exp( - a 1 ) ] - exp( - a 2 )} = limitation of phytoplankton growth due to incident light intensity ( I )  
where: 
a 1 = KhZ; 
a 2 = I/Io; z = depth; 
f(F) = [ F]/(KI + [F]) 
O(T) = 1.07 (T-20) 
ADO = [DOsat] - [DO] = Oxigen deficit 
where: 
[DOsat] = 14.6244 - 0.367134T + 0.0044972T 2 - 0.0966S + 0.00005TS + 0.0002739S 2 

[mg C 1- i ] 

[ m g C l - ' ]  
[mg N 1-1 ] 

[ m g N 1 - 1 ]  

[mg P 1- 1] 

[mgO1-1  ] 

[mg 0 1- 1] 

(1) 

12) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Table 1 (continued) 
b. Functional relationship between forcing functions (T,I), and kinetic parameters and list of parameter values which appear in 
Table la 

Parameters: 
~o = 0.12 [h-1] maximum specific growth rate of phytoplankton at optimal temperature T O 
Kni t = 0.0023 [h - l ]  nitrification rate 
K'de c = 0.0048 [h -1 ] BOD decay rate 
K n = 0.05 [mg N 1-i] nitrogen half-saturation constant 
Kp = 0.01 [mg P 1-1] phosphorus half-saturation constant 
K,,f = 0.005 [h-1] phytoplankton mortality rate 
Krf= 0.004 [h -1] phytoplankton respiration rate 
Kmz = 0.005 [h-1] zooplankton mortality rate 
Kescz = 0 .002  [ h -  1 ] zooplankton escretion rate 
Kgrz = 0.05 [h-i] grazing zooplankton rate 
Kfz = 1 [mg C 1-1] grazing half-saturation constant 
Ksedf = 0.004 [h -I  ] phytoplankton sedimentation rate 
Krs n = 0.0007 [mg N 1-1 h -1] rate of nitrogen release from the sediment 
Krs n = 0.0001 [mg N 1-1 h -1] rate of phosphorus release from the sediment 
Korea = 0.001 [mg DO 1-1 h -I] rate of sediment uptaken of oxygen 
Krear = 0.045 [h-I] reareation constant 
Eff = 0.7 efficiency in biomass conversion from phytoplankton to zooplankton 
I o = 50.000 [lux] optimal light intensity for photosynthesis 
Kh: = 0.4 [ m - I ]  light shading coefficient 
T O = 31 [°C] optimal temperature for phytoplankton growth 
T a = 35 [°C] temperature at which phytoplankton growth stops 
b = 0.114 [°C-1] empirical coefficient 
S = salinity of the lagoon (30%0 average value) 

ical c o m p a r t m e n t  includes  seven chemical  and  
biological state variables,  cons idered  as the most  
representa t ive  of the eu t rophica t ion  process. In-  
ter re la t ionships  among  state variables were for- 
mu la t ed  after extensive in situ research (Ber tonat i  
et al., 1987) and  are repor ted  in Tab le  la .  The  
model  involves for each state variable,  the solu- 
t ion  of the following second order  par t ia l  differ- 
ent ia l  equat ion:  

% 0% 0% 0% 
- -  + + + A j +  ~.,Skj (1 )  

Ot Ox Oy Oz k 

where  cy represen ts  the concen t ra t ion  of the Jth 
variable,  Cbjx = KFj is the flux vector  a long the x 
direction,  Fj be ing  the spatial  g rad ien t  and  K a 
diffusivity tensor,  Aj a set of different ial  equa-  
t ions in te rconnec t ing  the state variables,  and  Ski, 
the sinks a n d / o r  sources e i ther  i n s t an t aneous  or 
cont inuous .  If the diffusivities are supposed to be 

uncor re l a t ed  and  cons tant  in respect of t ime and  
space, the diffusivity tensor  becomes  diagonal:  

• x Kx~ o o i l  
% = o K. o ) r~ (2) 
• z o o Kzz rz 

and  Eq. 1 takes the more  familiar  form: 

OCj 02Cj 02Cj 02Cj 
a t  = K ~ x ~  + K ' T  + Kzz o~ 

+ A i + ~,SK~. (3) 
k 

4. Structure of  the program 

The program is s t ruc tured  according to the 
flow-chart of Fig. la ,  and  is described in the 
caption.  The  numer ica l  in tegra t ion  of the diffu- 
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sion terms of Eq. 3 is performed by applying the 
fractional step method, usually employed to deal 
with the diffusion along the three space coordi- 
nates separately: instead of solving numerically 
the global three-dimensional equation, the three 
contributions to the flux are computed subdivid- 
ing the time step into three substeps and solving 
a one-dimensional diffusion equation at a time. 
The contribution to the change of concentration 
due to biochemical reactions inside each cell is 
then added. 

The three one-dimensional diffusion equations 
are solved by adopting the implicit Laasonen 
(Laasonen, 1949) scheme, which proved to be the 

(1 + D)c~  +at - D c ~  +at 

- D c { + a t  + (1 + 2 D ) c ~  +at _ Dct3 + at 

- -Dct+At l -1  q-  ( 1  -}- 2D)c[ +at 

most suitable in dealing with continuous sources 
of pollutant, as it leads to the best agreement 
between the numerical solution and the convolu- 
tion of the analytical one, when the latter can be 
found (Dejak et al., 1987a). As the same proce- 
dure is repeated for each horizontal or vertical 
layer, in the following discussion, attention will 
be focused on the integration of a single layer, 
which can be represented by a 2D matrix, and we 
will generally refer to a line or a column of the 
matrix as an integration segment. The discretiza- 
tion of the diffusion equation, in the simplest 
case of costant diffusivities and of close bound- 
aries, leads to the following tridiagonal system 

= c '  1 

=c'2 

r ,  t + a t  
- -  L l C i +  1 : C: 

(4) 

° . .  

t + a t  
- -  D C n  - 1 

where D is the dimensionless diffusion number, 

D = K x x A t / A x  2 = K y y A t / A y  2. 

The system was solved using the recursive Thomas 
algorithm, considered as the most suitable for the 
scalar computers. Defining ai,  fli, Yi, respectively 
as the coefficients of the unknowns c i_ 1, ci and 
ci+ 1, the method requires the following computa- 
tional procedure: 

forward elimination: 

')/I 
f l  ~ - -  & 

3,,. 
k 

( ~ i  - -  O / i f / - - 1 )  

1 
f .  

(&-~. f . -1)  

c~f, 
g l  . . . .  Y~ 

(C~ - aigi_1) k 
g i  

D 
f l  I + D  

D 
f / = -  

( l  + 2 D  + D f i  1) 

1 
f .  

( l+  D+ Dfn-1) 

c~fi 
g l  = - - -  D 

(c[ + Dgi-Ofi 
g i  D 

g . = ( c t - ~ . g . _ l ) f ,  g. = (c'. + D g . _ 0 f .  

(5a) 

(5b) 

(5c) 

(Sd) 

(5e) 

(5f) 

. . .  

+ (1 + D ) c t .  +at 

and back substitution: 

t + a t  
Cn = gn 

r t + A t  
C[ +At = g i - - f i C i + l  

cl +a' =g -f2c  +a' 

=c" 

(6a) 

(6b) 

(6c) 

Since the vector f ,  with constant diffusion 
numbers, depends only on the values of the coef- 
ficients of the unknowns, it can be evaluated at 
start up time, while only the vector g and the 
solution vector c need to be computed at each 
time step, respectively requiring 3n and 2n oper- 
ations. Along both horizontal directions, each 
integration segment is made up of a variable 
number of land points m, which interrupt the 
transport process. Nevertheless, it is still possible 
to utilize the same algorithm, but the choice of 
the appropriate 81 and fin for each segment 
depends upon the local configuration of the 
bathymetry and this leads to the computation of 
varying fi s. 

In the scalar version of the program a complex 
procedure was implemented, effecting the check- 
ing of the bathymetry at each time step and at 
each grid point within each integration segment. 
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I I 
JREACTOR 

IREADDATA I ) IGETBAT J ~  
I It,-,G  I ( I TEMP 

H'FATFLU X LIGHT ~)  
t ZDIF 

Fig. 1. Flow-chart of the seasonalized program in its present 
configuration. Subroutines GETBAT, GEOMET, INIZV, and 
TEMP are called before the main loop in time starts, for 
reading the bathymethry and performing the calculation of 
auxiliary vectors used during the integration of the diffusion 
equation. Subroutines HEATFLUX and LIGHT, called once 
a day, bring up to date the water temperature and calculate 
energy input for phytoplankton photosynthetic activity. The 
main body of the program is constituted by the three subrou- 
tines XDIF, YDIF, ZDIF, which perform the numerical inte- 
gration of the diffusion equation, and REACTOR, which 
changes the concentration of state variables within each cell, 
according to the equation of Table 1. Subroutines MAPVE 
and DEPTH, give a first idea of the concentration pattern, 
printing out data regarding a particular layer or vertical 
section. 

First, the occurrence of water or land was verified 
and then different values for f/ were chosen, 
according to the position occupied within a set of 
continuous water cells, or to the fact that the ith 
grid point was the first or the last water point. If 
m interruptions were found, the integration was 
performed by solving in succession rn + 1 tridiag- 

onal systems. Memory saving was achieved in this 
way, since the different values for f elements 
were rewritten over the same area, but this 
method led to implement highly nested condi- 
tional blocks, which made the computation rather 
cumbersome. 

5. Optimization for Cray X-MP/12 

The program, originally conceived to run on 
one of the fastest scalar computers available in 
the seventies (CDC 7600), was first optimized for 
the Cray X-MP/12, mostly to solve problems 
deriving from the computational domain, which 
was too large compared with the RAM memory 
resources. In fact, 2867000 memory locations 
were needed if the concentration values of the 8 
state variables were associated with all the mesh 
points, regardless of their belonging to the water- 
body. The lagoon being a shallow water basin, 
only about 30 000 cells physically pertain to the 
modelled system, and constitute the real compu- 
tational domain, giving an effective storage de- 
mand of 240 000 locations. The concentration val- 
ues were therefore associated with the elements 
of a vector, regardless of their physical location, 
and a 140 × 128 x 20 matrix was constructed, 
which establishes a correspondence between the 
elements of the vector and their physical position 
inside the grid (see Fig. 2). This procedure, the so 
called indirect addressing, though permitting the 
maintenance of the memory request below the 
availability of RAM memory, affected the perfor- 
mance, as the gather-scatter operations, needed 
to read the state variable vectors, had to be 
carried out by an internal software routine. 

Also, attempts were made to optimize the dif- 
fusion subroutines XDLAAV and YDLAAV, 
which take nearly 78% of the execution time, as 
shown in Table 3a, because of the non linearity of 
the open boundary conditions and of the abruptly 
changing lagoon bathymetry. The computation of 
the vertical diffusion is less cumbersome, since a 
simple reflective condition enables one to deal 
with the close boundaries. Earlier optimization 
efforts were mainly dedicated to removing all 
unvectorizable conditional blocks inside the main 
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loop by adequately coding the checking of the 
bathymetry and confining logical operations to 
the initialization phase. This aim was achieved by 
replacing each piece of code leading to alterna- 
tive paths with a single general algebraic expres- 
sion, containing several terms, which embodied 
all information associated with each grid point 
(i.e. water  or land, segment lengths, distance of a 
water  point from the nearest  land point, closed or 
open boundaries). Switching o n / o f f  each term by 
means of multiplicative coefficients assuming the 
binary code 1 or 0, the correct values for each 
element  of the auxiliary vector f were chosen. 
Through this substitution with more tractable al- 
gebraic operations, all nested conditional blocks 
could be eliminated, making it possible to fully 
vectorize both horizontal diffusion subroutines. 
After  choosing the right values for the vectors f 
for a whole layer, the integration was carried out 
by means of vector operations, as the same step 
of the recursive algorithm can be computed si- 
multaneously for all the systems belonging to the 
same layer. However, in spite of a fully achieved 
vectorization of the code, a consistent decrease of 
the execution time was yet to be obtained, as the 
overall performance was greatly affected by the 
continuous transfer of  data to and from the main 
memory,  a t ime-consuming operation on super- 
computers  (Dejak et al., 1988). 

6. Optimization of the program for Cray X - M P /  
48 

The availability, since 1988, of the more pow- 
erful Cray X-MP/48 ,  8 Mword shared memory 
and 4 CPUs, stimulated a general restructuration, 
which, again, started from the subroutines XD- 
LAAV and YDLAAV.  A different approach was 
undertaken,  aimed at exploiting both the in- 
creased vector and parallel potentialities of the 
Cray X-MP 48 and its memory capacity. In fact, 
by recomputing values for ai,  fli ,  "~i, it becomes 
possible to associate an entire integration seg- 
ment  with only one system, having the maximum 
number  n x = 128 or n y - - 1 4 0  unknowns. The 
three coefficients uniquely define a value for f i ,  
so that, once they are assigned at each grid point 
and fi is calculated, the simultaneous elimination 
of all logical blocks and of all shifting operations 
is achieved, greatly enhancing the program vec- 
torizability. 

The physical meaning of the procedure ap- 
pears more clearly, for the general case of space- 
varying Dis (which had been already introduced 
along the vertical), by rewriting the ith equation 
in the modified form: 

-Oic~+-?t + ( l  + D i + O i + l ) C ~  +At - Oct+Ati i+1 : C f  

(7a) 

1 2 3 4 5 1 2 3 4 5 
1 1 1 1 1 i 0 1 2 3 0 !  
2 1 1 2 i 0 4 5 0 0 
3 01if: ~: :0!i: 1 1 3 0 0 0 6 7 
4 ~iiii:~i!! 1 4 0 0 0 0 8 
5 : : 0  0 i : O  1 5 0 0 0 0 9 

B INDEX l i  
c(INDEX(I'2) = 1 "  

2 c(INDEX(1,3)=2)__ 
c(INDEX(1,4) =3 
c(INDEX(2,2) =4) 
c(INDEX(2,3) =5) .... 
c(INDEX(3,4) =6)-- 

i c(INDEX(3,5)=7)~ _ 
c(INDEX(4,5) =8)~ 
c(INDEX(5,5) =9) _ 

c 

Fig. 2. A simple example of indirect addressing. A matrix B(i,j) is defined, whose elements bij can be either 0 or 1 if a land cell 
(shaded) or a water cell is found at the position i,j. A second matrix, 1NDEX(i,j), can be derived, whose elements are 0 if bi, j is 0, 
or a progressive number, increasing to unity any time that bi, j equals 1. These numbers will indicate the position of the cell i,j 
inside a vector c, so that the matrix INDEX establishes a biunivocal correspondence between the coordinates i,j of any water cell 
and the elements of the vec to r :  b i j  = 1 ,~, c(1NDEXij). 
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C: +At "l- O i ( c f  +At - C'+A'~i-1 ] 

+ Oi + I(C~ +At -- _t+At X ci+ 1 J=C~ (7b) 

Since the reflective condition is applied at 
physically closed boundaries, the two contribu- 
tions to the flux along a given direction must 
vanish if a land cell is found at the ith position. 
Therefore, the diffusion number can be associ- 
ated with the wall between two ceils and set to 0 
if either of them is a land cell, while it maintains 
its preassigned value for contiguous water cells. A 
matrix of appropriate diffusion numbers can be 
readily computed, checking the bathymetry at 
start up time for defining a matrix BUd, k), whose 
elements are equal to 1 if the cell belongs to the 
waterbody and equal to 0 otherwise. Following 
this procedure, the three coefficients for a i,/3i, Yi 
required for the ith equation along the x direc- 
tion at the j th section of the kth layer, are 
calculated using the formulas: 

Oli = - - D i -  1( a i -  l,j,k ai , j ,k  ) (8a) 

/3i = 1 + Di_l(Bi_ld,kni,j,k) + Di(Bi,j,kBi+ld,k ) 
(8b) 

Ti = -- Di  ( Bi, j ,k Bi  +l,j,k ) (8C) 

The coefficients so computed enable one to 
deal with all possible situations occurring within 
an integration segment as a consequence of the 
variation of the bathymetry. By assigning to 
Bn + 1,~,~ or to B0,y,k the value 0, the case of closed 
boundary is included as well, being/31 = 1 + D0(1 
• 0) +DI(I"  1)= 1 +D1, and /3n = 1 +Dn_l(1 " 1) 
+ Dn(1 • 0) = 1 + D n. Furthermore, the procedure 
can easily be applied also to the case of space 
varied diffusion numbers, which may be esti- 
mated as a function of the different mean squared 
tidal velocities inside the water body (Dejak and 
Pecenik, 1991). After computing the coefficients 
for the whole grid, the vectors f are calculated 
for each segment along both directions and stored 
in two 3D matrices, which contain all the infor- 
mation sufficient to correctly deal with the 
bathymetry. In this way, with the exception of the 
reading of these matrices, no additional opera- 
tions are needed during the main loop in time. 

The solution of the set of m constant size 

tridiagonal systems, associated with the segments 
belonging to the same layer, is carried on by 
again applying the same recursive algorithm but 
in parallel, that is, computing the same step of 
the algorithm for the whole system by means of a 
single vector operation. The maintenance of this 
procedure is preferred, instead of solving sequen- 
tially the rn systems using other proposed vecto- 
rial algorithms (Traub, 1973; Kershaw, 1982), be- 
cause the ratio m / n  is nearly 1 in the horizontal 
plane. In such instances, as demonstrated by 
Hockney and Jesshope (1988), it is more advanta- 
geous to keep adopting a recursive algorithm, 
which, besides guaranteeing a complete vector- 
ization, presents the minimum number of opera- 
tions and a lower memory demand for storing the 
auxiliary functions. 

The solving of a set of tridiagonal systems with 
a constant number of unknowns, even when the 
segments comprise land cells, may, at first sight, 
appear a superfluous operation, and also, the 
new procedure seems to increase considerably 
the memory demand. As far as the first objection 
is concerned, the adoption of this method is 
justified by the fact that the minimization of both 
logical and input operations inside the main tem- 
poral loop allow one to fully exploit the vector 
potentialities of the machine, as will be shown in 
the result and discussion section. As regards the 
second point, a great saving is achieved by storing 
the auxiliary functions in three vectors having the 
same size of effective computational domain and 
using indirect addressing: in fact the auxiliary 
function value fi is constantly 0 for any land cell. 
The extensive use of indirect addressing does not 
affect the performance on Cray X-MP48, as they 
are carried on by specifically designed hardware 
processors. 

6.1. Vertical structuration o f  the horizontal diffu- 
sion algorithm 

The vertical diffusion subroutine ZDLAAV 
was restructured, following a procedure analo- 
gous to the one illustrated above. The absence of 
open boundaries only greatly facilitates the task: 
the tridiagonal systems, each simulating the diffu- 
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sion along a water  column, were regrouped in 
vertical sections of the computational  grid; for 
each section, the maximum depth was deter- 
mined and only the concentration values of water  
columns deeper  than 1 m were transferred to a 
2D matrix and elaborated as discussed above. 

The Venice lagoon is a shallow water  basin, 
with only major navigation channel deeper  than 4 
m: below this depth, grid points associated with 
land are far more abundant  than those associated 
with water  and it frequently happens that no 
contiguous water  cells are met  within a given 
segment. Thus, the number  of  systems to be 
solved decreases with depth, as can be seen in 
Fig. 3, and an unnecessary waste of time would 
derive from a straightforward application of the 
above procedure.  To avoid this, at each layer the 
integration segments containing at least two con- 
secutive water elements are counted and their 
position inside the layer is memorized. By repeat-  
ing the procedure for all layers and for both 
directions of integration, two 128 × 20 and 140 × 
20 2D matrices are defined, respectively associ- 
ated with the X and Y axes, containing numerical 
flags, 1 or 0, which verify whether  integration is 
to be executed along a specified segment. These 

operations are again performed at start up time, 
outside the main time loop: inside it, at each time 
step, for each layer, only the concentration values 
located in the segments which have to be brought 
up to date are read from the main memory, 
temporarily stored in an auxiliary 2D matrix and 
elaborated. In this way, the integration is carried 
out, starting from the surface layer and proceed- 
ing to the bottom, by gradually reducing the 
dimension of the 2D matrix, as the depth in- 
creases. 

6.2. Open boundaries 

Program restructuration was also undertaken 
in respect of the purposely elaborated conditions 
on the "open  boundaries".  By adopting the ter- 
minology introduced by Song et al. (1986), the 
algorithm here adopted, although " independent" ,  
may be classified as "unhomogeneous"  according 
to whether  the integration segments present ei- 
ther closed or open ends. Three  alternative for- 
mulations are adopted for extrapolating the 
boundary value Co, based on a second and first 
difference analysis of the values ct, c2, c 3 of the 
state variable in three cells adjacent the bound- 

o 
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14 l - - - - - -  . . . .  - ~  . . . . . .  1;r,, 
1 6  
17 
1 8  

0 10 20 30 ,40 50 60 7'0 
% of  segments to be integrated 

40 90 100 

North-South (XDIF) ~ East-West (YDIF) 

Fig. 3. Percentage of segments to be brought up-to-date, and, therefore, of the tridiagonal system to be solved at each time step 
along the two horizontal directions, as a function of depth. A marked decrease occurs, especially for the North-South direction (X 
axis), below the tenth layer, which suggested modification of the integration procedure, inserting in a 2-D matrix of variable size 
only those segments which are affected by the transport process. 
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ary. A Gaussian behaviour of the solution is 
assumed when three points belong to the compu- 
tational domain (Eq. 9a), an exponential decrease 
if only two points are available (Eq. 9b), and, 
finally, a closed boundary (Eq. 9c) is simulated 
when any extrapolation is impossible. 

= o) 

C O = C3(C1//C2)  3 

In c 0 -  3 In c I + 3 In c 2 -  In c a = 0 (9a) 

(A,  = O) 

C O = CI (CI / /C2)  

In c 0 -  2 In c 1 + In c 2 = 0 (gb) 

C O = C 1 

In c o - In c I = 0 (9c) 

The extrapolated value cannot be directly in- 
troduced in the implicit integration scheme 
adopted, without refining it up to convergence, 
within a preassigned error. In fact, extrapolation 
is based upon the concentration distribution at 
the past time, t, and it becomes a first "guess" for 
either the first or the last unknown of the linear 
system (Eqs. 5). In order to avoid unrealistic 
outward fluxes, the extrapolation is repeated af- 
ter solving the system and the new value c o is 
compared with the old one: if the difference is 
greater than a preassigned error additional refin- 
ing iterations are performed up to convergence, 
using the new c o and c t again. In the previous 
version of the program, the choice of the correct 
form of Eqs. 10 was made in the initialization 
phase, by storing in four matrices the logical 
variables which characterize the physical features 
of each boundary. Thus, the following general 
formulation has been introduced to replace Eqs. 
9a, 9b, 9c: 

Co= [[man(C1 c2)] k } 
[[  k c2 ,~11 c k h. (10) 

Because of the symmetry of the expression, it 
is sufficient to store the exponent of the ratio 
Cl/C 2, since it coincides with the second term of 
the product, so that k = 3 and k = 1 correspond 
to the presence respectively of three points and 
two points. The internal function min[(cl/c2), 

(c2/cl)] assures a smooth extrapolation whenever 
a random fluctuation, originated by fluxes along 
other directions, occurs in the concentration pat- 
tern, avoiding the introduction of further logical 
conditions. Values for k are computed for both 
ends of each segment along each direction and 
stored in four 2D matrices. The discrimination of 
the type of boundary is instead given by the value 
taken by the corresponding element of the matrix 
B: h = 0 (land) is a closed boundary; h = 1 (water) 
is an open boundary. It must be remarked that 
the condition expressed by Eq. 9c is a reflective 
one: therefore, instead of introducing a logical 
condition, h can be set equal to 0 whenever the 
last point is isolated from the water body along 
the direction perpendicular to the boundary, in- 
cluding in the general formulation all possible 
cases, without introducing logical instructions ex- 
plicitly. 

Non linearity of boundary conditions, on the 
contrary, affects the computation time more 
heavily, since it demands inner loops at each time 
steps, whose number is not a priori predictable, 
because the convergence depend upon the time- 
varying distribution of concentrations within each 
segment. To reduce execution time due to this 
procedure, after solving the systems first, only 
those segments which require further refinement 
are replaced in the auxiliary 2D matrix used for 
handling the calculations for each layer. The 
number of systems to be solved gradually de- 
creases, and the internal loop stops when all the 
extrapolated values are coherent with the new 
concentration patterns. 

7. Parallellism on Cray systems: macro-tasking 
and micro-tasking 

Besides being particularly suitable to be vec- 
torized, the program presents in its main body a 
true parallel structure. Within each diffusion sub- 
routine, the computation is carried on "inde- 
pendently" not only with regard to each integra- 
tion segment, but also to each layer. These condi- 
tions greatly favour the exploitation of the four 
CPUs available on the CRAY X-MP/48. Such a 
possibility is referred to as "multitasking" and it 
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Table 2 
a. Flowtrace of a test version of the original program (1 state variable, and no trophic interactions) obtained with Cray X-MP12, in 
dedicated mode for a 48-h simulation 

Routine Running time Percent of Number of 
(s) running time calls 

MODELC 0.001 (0.00%) 1 
GEOMET 1.697 (3.45%) 1 
GETBAT 0.142 (0.29%) 1 
INIZV n.r. (0.00%) 1 
XDLAAV 29.429 (59.87%) 48 
YDLAAV 12.294 (25.01%) 48 
ZDLAAV 5.218 (10.62%) 48 
MAPVE 0.275 (0.56%) 4 
DEPTH 0.094 (0.19%) 4 

Total 49.151 (100%) 156 

b. Flowtrace of a test version of the original program (1 state variable, and no trophic interactions) obtained with Cray X-MP48, in 
dedicated mode for a 48-h simulation 

Routine Running time Percent of Number of 
(s) running time calls 

Differences with Table 2a 

(s) (%) 

MODELC 0.004 (0.00%) 1 + 0.003 + 300.0 
GEOMET 1.685 (5.19%) 1 - 0.012 - 0.7 
GETBAT 0.135 (0.42%) 1 - 0.007 - 4.9 
INIZV n.r. (0.00%) 1 n.r n.r. 
XDLAAV 14.866 (45.82%) 48 - 14.563 - 49.5 
YDLAAV 10.875 (33.52%) 48 - 1.419 - 11.5 
ZDLAAV 4.493 (13.85%) 48 - 0.725 - 13.9 
MAPVE 0.293 (0.90%) 4 + 0.018 + 6.1 
DEPTH 0.092 (0.28%) 4 - 0.002 - 2.1 

Total 32.444 (100%) 156 - 16.707 - 34.0 

c. Flowtrace of a test version of the program (1 state variable, and no trophic interactions) after restructuring the subroutine which 
account for diffusion on the horizontal plane (XDIF, YDIF), obtained with Cray X-MP48, in dedicated mode for a 48-h simulation 

Routine Running time Percent of Number of 
(s) running time calls 

Differences with Table 2b 

(s) (%) 

MODELN 0.076 (0.57%) 1 + 0.072 
GEOMET 0.104 (0.78%) 1 - 1.581 
GETBAT 0.135 (1.01%) 1 0.0 
INIZV 0.530 (3.98%) 1 0.0 
XDIF 4.887 (36.67%) 48 - 9.979 
YDIF  2.794 (20.97%) 48 - 8.081 
ZDLAAV 4.404 (33.05%) 48 - 0.089 
MAPVE 0.303 (2.27%) 4 + 0.010 
DEPTH 0.092 (0.69%) 4 0.0 

Total 13.325 (100%) 156 - 19.119 

+ 1800 
-93 .8  

0.0 
0.0 

-67.1 
-74.3 

- 2 . 0  
- 3 . 4  

0.0 

-58 .9  
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Fig. 4. Number of open boundaries along the two horizontal directions, as a function of depth. The great difference between the 
two directions explains the different results reported in Table 2a and 2b. Cray X-MP48 can perform gather-scatter operations, 
necessary to deal with the open boundaries, by means of hardware facilities, when, on Cray X-MP12, the same operations had to be 
carried out by internal subroutines. As a consequence of this hardware improvement, the execution time of XDLAAV is reduced 
by 50%, while the one of subroutine YDLAAV is reduced by only 12%. 

may include macro- and microtasking according 
to whether independent tasks are carried out at a 
subroutine or at a DO loops level (CRAY, 1986). 
An example can be given: when employing 

macrotasking, the integration of the transport 
equation for different state variables could be 
concurrently carried on by the four CPUs, while 
the microtasking environment would allow one to 

Table 3 
a. Flowtrace of the original program, with eight state variables which undergo diffusion and biochemical processes, run on Cray 
X-MP48, in dedicated mode. Linear extrapolation from this 48 hours simulation, gives an expected running time of about 16h and 
40 min for simulating one year 

Routine Running time Percent of Number of 
(s) running time calls 

EUVELAV 0.058 (0.02%) 1 
HEATFLUX 0.001 (0.00) 1 
FOURIER 0.029 (0.01) 6 
GEOMET 1.680 (0.51%) 1 
GETBAT 0.140 (0.04%) 1 
INIZV n.r. (0.00%) 1 
LIGHT n.r. (0.00%) 2 
MAPVE 1.669 (0.50%) 32 
REACTOR 28.423 (8.59%) 48 
TEMP 0.012 (0.01%) 1 
TZDLAAV 0.009 (0.01%) 456 
XDLAAV 123.401 (37.31%) 48 
YDI.AAV 134.599 (40.69%) 48 
ZDLAAV 40.737 (12.32%) 48 

Total 330.762 (100%) 695 
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b. Flowtrace of the program, with eight state variables, which undergo diffusion and biochemical processes, after restructurating 

the subroutines which account for the diffusion, run, for a 48-h simulation, on Cray X-MP48, in dedicated mode. Linear 
extrapolation from this 48-h simulation, yields 5 h and 30 min for simulating 1 year: running time was decreased by roughly two 

thirds 

Rout ine Running time Percent of Number  of 
(s) running time calls 

Differences with Table 3a 

(s) (%) 

CRAY8 0.156 (0.14%) 1 0.0 0.0 

H E A T F L U X  0.001 (0.00) 1 0.0 0.0 

F O U R I E R  0.337 (0.31) 6 + 0.308 + 1062.1 
G E O M E T  0.106 (0.10%) 1 - 1.574 - 93.7 

GETBAT 0.135 (0.13%) 1 - 0.005 - 3.6 
INIZV 0.552 (0.50%) 1 0.0 0.0 

LIGHT n.r. (0.00%) 2 0.0 0.0 

MAPVE 2.056 (1.88%) 32 + 0.387 + 23.2 
R E A C T O R  28.532 (25.99%) 48 + 0.109 + 0.4 

TEMP 0.014 (0.01%) 1 + 0.002 + 16.7 
T Z D L A A V  0.009 (0.01%) 456 0.0 0.0 
XDIF  39.553 (36.03 %) 48 - 83.848 + 67.9 

YDIF 28.854 (26.28%) 48 - 105.475 - 78.6 

Z D I F  9.510 (8.66%) 48 - 31.227 - 76.7 

Total 109,775 (100%) 695 - 220.987 - 66.8 

deal at the same time with the solution of the 
tridiagonal system pertaining to different layers, 
but concerning the same variable. 

In our particular case, microtasking clearly ap- 
pears to be the preferable choice, because the 
program granularity is rather fine and the submit- 

ted tasks prove to be well balanced. Besides, the 
subroutines XDIF, YDIF and ZDIF were already 
organized in DO loops, by which the same calcu- 
lations are repeated for each layer or vertical 
section, so that no change in the structure is 
required. Microtasking also permits a more ira- 

Table 4 
Flowtrace of the new program, with eight state variables, run on Y-MP432, for a 48-h simulation, using one CPU. Linear 

extrapolation from these data, gives an expected CPU time of about 4 h and 2 min for a yearly simulation 

Routine Running time Percent  of Number  of 

(s) running time calls 

Differences with Table 3b 

(s) (%) 

C O N T O R N I  0.277 (0.33%) 

COST n.r. (0.0%) 
H E A T F L U X  5,546 (6.49%) 

F O U R I E R  0,069 (0.08%) 

G E O M E T  0.085 (0.10%) 
GETBAT 0.084 (0.10%) 

INIZV 0.313 (0,37%) 
LIGHT 0.043 (0.05%) 
MAPVE 1.036 (1,21%) 

N E W M O D E L  0.034 (0,04%) 

R E A C T O R  33.516 (39,20%) 

TEMP 0.042 (0,05%) 
XDIF  23.486 (27.47%) 
YDIF  16.497 (19.29%) 

Z D I F  4,459 (5.22%) 

Total 85.487 (100%) 

48 0.0 0.0 

1 0.0 0.0 

26328 + 5.545 n.r. 
6 - 0.268 - 79.6 

1 - 0.021 - 19.8 

1 - 0.051 - 37.8 
1 - 0.239 - 43.3 

1097 0.0 0.0 
32 - 1.020 - 44.6 

1 0.0 0.0 
48 + 4.984 + 17.5 

1 + 0.028 + 233.3 
48 - 16.067 - 40.6 
48 - 12.357 - 4 2 . 8  
48 - 5.051 - 53.1 

277717 - 24.288 - 22,1 
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mediate and easier synchronization of the differ- 
ent jobs, and, consequently, a faster and less 
expensive execution. Also less difficulties are en- 
countered by the programmer using this environ- 
ment. 

In 1990 the more powerful Y-MP/432  became 
available at the CINECA, but, because of the 
structural similarity with the Cray X-MP/48 ,  fur- 
ther essential modifications were not required for 
exploiting the new machine at its best. The  main 
difference is, in fact, a 20% shorter clock period, 
which leads to roughly the same decrease in 
terms of execution time. 

Table 5 
CPU time and elapsed time obtained using all four CPUs of 
Cray Y-MP432. Automatic parallelization does yet not pro- 
vide a good performance when complex programs have to be 
dealt with: elapsed time has been decreased by 9% of that 
obtained using 1 CPU (see Table 4a). Instead, an appropriate 
use of microtasking facilities makes it possible to achieve a 
reduction of about 33%. Reported times refer to a 48-h 
simulation: linear extrapolation from these data yields an 
expected elapsed time of about 1 h and 45 min for a yearly 
simulation 

CPU Time Elapsed time Ps Fp 
(sec) (see) (%) 

Automatic 
parallelization 310.363 78.233 1.093 11.3 
Microtasking 96.613 28.667 2.982 88.5 

8. Optimization results 

8.1 Vectorization 

Trial runs were performed, using an incom- 
plete version of the model, momentarily neglect- 
ing subroutines implementing model seasonaliza- 
tion (subroutines F O U R I E R ,  H E A T F L U X ,  
LIGHT,  TEMP)  and all biochemical computation 
(subroutine REACTOR)  and considering only the 
diffusion of one conservative variable. The new 
diffusion subroutines were named XDIF,  YDIF 
and ZDIF.  All runs include a 48-h test simula- 
tion, to guarantee homogeneity in interpreting 
the results. Times are always reported in seconds 
and a random fluctuation of 10% around their 
values may occur for different runs, depending on 
the working condition of the machine. 

Comparison of Table 2a and 2b shows the 
advantages automatically provided by the more 
powerful hardware of the Cray X-MP/48:  the 
overall reduction in running time is roughly 34%, 
due partly to the shorter clock-period and partly 
to the fact that ga ther / sca t te r  operations are 
carried out much more quickly by the specifically 
designed hardware. The latter improvement ex- 
plains the much greater decrease, nearly 50%, in 
running time for the subroutine XDLAAV, com- 
pared with an average decrease of about 12% for 
the subroutines YDLAAV and ZDLAAV: the 
greater number of open boundaries along the 
S - N  direction, see Fig. 4, demands a greater 

amount  of inner iterations, which involve 
gather /sca t ter  operations. 

The saving obtained by carefully restructuring 
the program clearly appears from the data of 
Table 2c: the time spent in the two restructured 
subprograms, XDIF and YDIF, drops from about 
25.7 s to 7.7 s, which is a reduction of roughly two 
thirds. 

Trial runs regarding the whole seasonalized 
program confirmed the results previously ob- 
tained, as the comparison between Table 3a and 
3b shows. The restructured program runs about 3 
times faster than the program optimized for the 
CRAY X-MP/12 ,  the estimated running time for 
a yearly simulation being only about 5 h and 30 
min. As has been mentioned, the Cray X -MP /4 8  
was substituted with the new model Cray Y- 
MP/432.  As expected, a reduction of the execu- 
tion time of about 20% was achieved, as one can 
see comparing the data of Table 4, from which it 
appears that a full year simulation takes about 4 
h 2 min, and Table 3b. 

8.2 Parallelization 

The results achieved with the optimization can 
be evaluated by computing the parallel speed-up 
(Ps), that is, the ratio between the elapsed time 
obtained using 1 CPU and the one activating all 4 
CPUs, and adopting the empirical Amdhal's law 
(Eq. 12), (Hockney and Jesshope, 1988) for esti- 
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mat ing  the fract ion of the p rogram actually exe- 

cuted in paral le l  by the four CPUs:  

( e , =  F , +  y ,  _FP+ (11) 
p = l , N  m 

with: Ps = Paral lel  speed-up;  F s = Frac t ion  of in- 
s t ruct ions executed sequential ly;  Fp = Frac t ion  of 
ins t ruct ions  executed concur ren t ly  for each task 
p;  m = n u m b e r  of processors (CPUs);  N =  
n u m b e r  of tasks; Op = overhead due to in te rna l  
rout ines  which control  the paral lel  execution.  

Dis regard ing  the overhead,  which never theless  
leads to an unde re s t ima t ion  of the fract ion of the 
code actually paral lel ized,  and  consider ing the 
whole p rogram as a un ique  task, one  gets: 

which can be solved explicitly for Fp, since Fp + F s 

= 1 .  

m ( P  s - 1) 
Fp = ( m  - 1 ) P  s " (13) 

Table  5 summarizes  the above calculat ion and  
compares  the per formances  ob ta ined  by applying 
the paral le l izat ion automatical ly  provided by the 
compiler  and  the one  acquired  by se l f -managing 
microtasking routines.  The  compiler  does not  
seem to cope with the complexity of the program,  
as the paral lel  speed up  is 1.09, which means  that  
only 11% of the code is executed s imul taneously  
by the four CPUs.  O n  the contrary,  a speed up of 
2.98 is ob ta ined  using microtasking rout ines,  

which indicates  that  at least 88% of the code has 
b e e n  efficiently paral lel ized.  

Table 6 
The table summarizes the effects of both hardware and software improvement on the time request for a yearly simulation of the 
macromodel. In the upper part performances reffer to diffusive programs only, in the middle part, performances are reported of 
seasonalized eutrophic-diffusive programs and in the lower one the results achieved exploiting parallel facilities are shown. 
Following a row, one can see the effect of the hardware improvements, as the data are obtained runnig the same program on 
different machines. Benefits achieved through the optimization of the code are instead illustrated by the decrease of running time 
along the columns of the table 

One state variable CDC 7600 A Cray X-MP/12 ~ Cray X-MP/48 
1 CPU 

Scalar 60.9 ( - 92%) 4.7 
(47%) 

Vectorized I version 2.5 (6%) 1.6 
(-56%) 

Vectorized II version 0.7 

Eight state variables 

Scalar 511.56 - 92% 39.62 ( - 40.11%) 23.73 
( - 30.7%) ( - 29.2%) 

Vectorized I version 27.46 ( - 38.8%) 16.8 
(-67.2%) 

Vectorized II version 5.5 

Eight state variables Cray X-MP/48 A Cray X-MP/12 A Cray Y-MP/432 
Dedicated mode 1 CPU 4 CPU 4 CPU 

CPU time 5.5 8.0 4.9 
( + 3%) ( - 72.5%) ( -  74%) 

Elapsed time 5.7 ( - 61%) 2.2 a ( - 21%) 1.75 
CPU time/4 1.375 2.0 1.225 

" Time estimated from running a test program, in which the eight state variables were not interconnected by the routine 
REACTOR. 
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9. Conclusion and discussion 

The increase in total CPU time observed when 
exploiting parallelism (first column in Table 5) in 
respect of the CPU time obtained using only one 
CPU, should not surprise, since a Ps equal to the 
number of CPUs, 4 in our case, is purely theoreti- 
cal. In fact, some tasks are intrinsically non-paral- 
lelizable, for example output operations, and they 
are necessarily carried out by one CPU, while the 
remaining three are waiting. Also unavoidable is 
the so called overhead, that is, the amount of 
time used up by the internal routines which man- 
age the parallel facilities. In view of that, a Ps of 
at least 88% must be considered as satisfactory. 

The effects of both hardware and software 
improvement, over a decade, on the running time 
of the macromodel are summarized in Table 6, 
which reports the estimated time for a yearly 
simulation, in hours, on different machines and 
for different versions of the program. Data were 
obtained from test simulations of usually two days 
and then extrapolated for the year, after subtract- 
ing the time used up by the inizialization subrou- 
tines. In the upper part, performances are re- 
ferred to diffusive programs only, which served as 
a test program for checking both the correctness 
of the output and the effectiveness of the restruc- 
turation. Times for the seasonalized eutrophic- 
diffusive programs, obtained with different ma- 
chines but using always one CPU, are reported in 
the middle part, while the lower part compares 
the results obtained using parallel facilities. Fol- 
lowing a row, one can see the effect of the 
hardware improvements, as the data are obtained 
running the same program on different machines. 
In fact, the introduction of the vector processors 
caused a decrease of running time of about an 
order of magnitude (92%), making it feasible to 
perform a yearly simulation of the complete pro- 
gram, as less than two days were required, while 
about 21 days were necessary on CDC 7600. 

The necessity of careful programming for an 
optimal exploitation of vector and parallel ma- 
chines, at least for complex programs, clearly 
appears if one follows the data along a column, 
referring to differently structured programs run 
on the same machine. For example, an overall 

reduction of 76.8% has been obtained through 
the two recodifications, allowing one to run the 
program on Cray X-MP/48 in 5.5 h instead of in 
approximately a day, with obvious benefits for the 
cost of simulations. Furthermore, as one can see 
from the lower part of the table, an optimization 
aimed at exploiting vector processors is usually 
helpful in locating the different tasks which can 
be carried out concurrently if a parallel machine 
is available. In fact, the final version of the pro- 
gram proved to be particularly suitable to be 
parallelized, leading to an estimated execution 
time of only 1.75 h for a yearly simulation. These 
drastic reductions not only present economic ben- 
efits, but, more important, they offer concrete 
possibilities of introducing additional state vari- 
ables and a more detailed formulation of their 
interactions, so enhancing the descriptive capabil- 
ities of the model. 
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